目录
第12章 代数结构预备知识
12.1 代数系统
定义(代数系统)
一个非空集合S,与若干个定义在S上的运算
以代数系统 [ S ; ∗ ] [S;*] [S;∗]为例,介绍几个二元运算的性质
封闭性、结合律、交换律、单位元、逆元、零元、分配律
-
单位元是唯一的
-
当*满足结合律,a的逆元是唯一的
-
逆元的乘是可交换的
-
零元是唯一的
克莱茵四元群 K 4 K_4 K4
∘ \circ ∘ | e | a | b | r |
---|---|---|---|---|
e | e | a | b | r |
a | a | e | r | b |
b | b | r | e | a |
r | r | b | a | e |
常用的集合记号
Z Z Z:整数集合
Q Q Q:有理数集合
R R R:实数集合
C C C:复数集合
N N N:自然数集合
M n , m ( R ) M_{n,m}(R) Mn,m(R): n × m n\times m n×m阶实数矩阵
Z n Z_n Zn:整数关于自然数 n > 1 n>1 n>1的同余类(等价类)为元素的集合,即 Z n = { [ 0 ] , [ 1 ] , … , [ n − 1 ] } Z_n=\{[0],[1],\dots,[n-1]\} Zn={[0],[1],…,[n−1]}
例12.5
设集合
S
≠
∅
S\neq\varnothing
S=∅,P(S)为其幂集合,
∩
,
∪
,
∼
\cap,\cup,\sim
∩,∪,∼分别为集合的交、并、补运算
这三个运算关于P(S)均封闭,所以 [ P [ S ] ; ∩ , ∪ , ∼ ] [P[S];\cap,\cup,\sim] [P[S];∩,∪,∼]是代数系统
12.2 同态、同构与商系统
定义(同态映射)
设有两个代数系统
[
S
;
∗
]
[S;*]
[S;∗]与
[
T
;
∘
]
[T;\circ]
[T;∘],存在映射
φ
:
S
→
T
\varphi:S\to T
φ:S→T
φ
(
a
∗
b
)
=
φ
(
a
)
∘
φ
(
b
)
\varphi(a*b)=\varphi(a)\circ\varphi(b)
φ(a∗b)=φ(a)∘φ(b)
称
φ
\varphi
φ为一个同态映射
当 φ \varphi φ满射,S与T同态;当 φ \varphi φ双射,S与T同构
定义(商结构/商系统)
首先引入相容等价关系, a ~ b ,且 c ~ d 时,有 a ∗ c ~ b ∗ d a~b,且c~d时,有a*c~b*d a~b,且c~d时,有a∗c~b∗d
可以以~作为S上等价类的划分,以[a]表示与a等价的元素全体
在 S ‾ \overline S S上定义新的运算 □ , s t [ a ] □ [ b ] = [ a ∗ b ] \Box,st~[a]\Box[b]=[a*b] □,st [a]□[b]=[a∗b],由于相容等价关系的存在,运算与代表元选取无关
称 [ S ; □ ] [S;\Box] [S;□]是原系统的商系统
12.3 代数系统 [ Z ; + , ⋅ ] [Z;+,\cdot] [Z;+,⋅]
公因数公倍数定理
a b = G C D ( a , b ) ⋅ L V M ( a , b ) ab=GCD(a,b)\cdot LVM(a,b) ab=GCD(a,b)⋅LVM(a,b)
长除法
G C D = { a i f b = 0 G C D ( b , a m o d b ) i f b > 0 GCD= \begin{cases} a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ \ b=0\\ GCD(b,a\ mod\ b)\ \ if\ \ b>0 \end{cases} GCD={a if b=0GCD(b,a mod b) if b>0
当d=GCD(a,b)存在时,必存在 d = s a + t b d=sa+tb d=sa+tb
第12章习题一
习题12.1
判断是不是代数系统
证明满足封闭性
习题12.2
找出代数系统的单位元、逆元和零元
习题12.3
若代数系统只有左单位元,是否唯一?
不是唯一的,当 a ∗ b = b ∗ b = b a*b=b*b=b a∗b=b∗b=b
习题12.4
证明商系统
[
S
′
;
⊗
]
[S';\otimes]
[S′;⊗]的运算结果与等价类代表元选取无关
证明:
由商系统的定义有
[ a 1 ] ⊗ [ a 2 ] = [ a 1 × a 2 ] [ b 1 ] ⊗ [ b 2 ] = [ b 1 × b 2 ] [a_1]\otimes[a_2]=[a_1\times a_2]\\ [b_1]\otimes[b_2]=[b_1\times b_2] [a1]⊗[a2]=[a1×a2][b1]⊗[b2]=[b1×b2]
设相容等价关系为~,那么 a 1 × b 1 ~ a 2 × b 2 a_1\times b_1~a_2\times b_2 a1×b1~a2×b2
∴ [ a 1 × b 1 ] = [ a 2 × b 2 ] \therefore~[a_1\times b_1]=[a_2\times b_2] ∴ [a1×b1]=[a2×b2]
习题12.5
证明等价关系(同余)与整数的加乘是相容的
a 1 , a 2 ∈ [ a ] , b 1 , b 2 ∈ [ b ] a_1,a_2\in[a],b_1,b_2\in[b] a1,a2∈[a],b1,b2∈[b]
a 1 = a 2 m o d k , b 1 = b 2 m o d k a_1=a_2~mod~k,b_1=b_2~mod~k a1=a2 mod k,b1=b2 mod k
设 a = k x a + i , c = k x c + i , b = k x b + j , d = k x d + j a=kx_a+i, c=kx_c+i, b=kx_b+j, d=kx_d+j a=kxa+i,c=kxc+i,b=kxb+j,d=kxd+j
易证
习题12.6
证明代数系统
[
S
;
+
]
.
[
T
;
+
]
[S;+].[T;+]
[S;+].[T;+]同构
S = { a + b i ∣ a , b ∈ Z } , S = { a + b 2 ∣ a , b ∈ Z } S=\{a+bi|a,b\in Z\},S=\{a+b\sqrt2|a,b\in Z\} S={a+bi∣a,b∈Z},S={a+b2∣a,b∈Z}
构造同构映射 φ : S → T , φ ( a + b i ) = a + b 2 \varphi:S\to T,\varphi(a+bi)=a+b\sqrt2 φ:S→T,φ(a+bi)=a+b2
- 证明是同态映射
- 证明是双射