【代数结构与数理逻辑(一)】代数系统

第12章 代数结构预备知识

12.1 代数系统

定义(代数系统)

一个非空集合S,与若干个定义在S上的运算

以代数系统 [ S ; ∗ ] [S;*] [S;]为例,介绍几个二元运算的性质

封闭性、结合律、交换律、单位元、逆元、零元、分配律

  • 单位元是唯一的

  • 当*满足结合律,a的逆元是唯一的

  • 逆元的乘是可交换的

  • 零元是唯一的

克莱茵四元群 K 4 K_4 K4

∘ \circ eabr
eeabr
aaerb
bbrea
rrbae

常用的集合记号

Z Z Z:整数集合

Q Q Q:有理数集合

R R R:实数集合

C C C:复数集合

N N N:自然数集合

M n , m ( R ) M_{n,m}(R) Mn,m(R) n × m n\times m n×m阶实数矩阵

Z n Z_n Zn:整数关于自然数 n > 1 n>1 n>1的同余类(等价类)为元素的集合,即 Z n = { [ 0 ] , [ 1 ] , … , [ n − 1 ] } Z_n=\{[0],[1],\dots,[n-1]\} Zn={[0],[1],,[n1]}

例12.5 设集合 S ≠ ∅ S\neq\varnothing S=,P(S)为其幂集合, ∩ , ∪ , ∼ \cap,\cup,\sim ,,分别为集合的交、并、补运算

这三个运算关于P(S)均封闭,所以 [ P [ S ] ; ∩ , ∪ , ∼ ] [P[S];\cap,\cup,\sim] [P[S];,,]是代数系统

12.2 同态、同构与商系统

定义(同态映射)

设有两个代数系统 [ S ; ∗ ] [S;*] [S;] [ T ; ∘ ] [T;\circ] [T;],存在映射 φ : S → T \varphi:S\to T φ:ST
φ ( a ∗ b ) = φ ( a ) ∘ φ ( b ) \varphi(a*b)=\varphi(a)\circ\varphi(b) φ(ab)=φ(a)φ(b)
φ \varphi φ为一个同态映射

φ \varphi φ满射,S与T同态;当 φ \varphi φ双射,S与T同构

定义(商结构/商系统)

首先引入相容等价关系 a ~ b ,且 c ~ d 时,有 a ∗ c ~ b ∗ d a~b,且c~d时,有a*c~b*d ab,且cd时,有acbd

可以以~作为S上等价类的划分,以[a]表示与a等价的元素全体

S ‾ \overline S S上定义新的运算 □ , s t   [ a ] □ [ b ] = [ a ∗ b ] \Box,st~[a]\Box[b]=[a*b] ,st [a][b]=[ab],由于相容等价关系的存在,运算与代表元选取无关

[ S ; □ ] [S;\Box] [S;]是原系统的商系统

12.3 代数系统 [ Z ; + , ⋅ ] [Z;+,\cdot] [Z;+,]

公因数公倍数定理

a b = G C D ( a , b ) ⋅ L V M ( a , b ) ab=GCD(a,b)\cdot LVM(a,b) ab=GCD(a,b)LVM(a,b)

长除法

G C D = { a                               i f    b = 0 G C D ( b , a   m o d   b )    i f    b > 0 GCD= \begin{cases} a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ \ b=0\\ GCD(b,a\ mod\ b)\ \ if\ \ b>0 \end{cases} GCD={a                             if  b=0GCD(b,a mod b)  if  b>0

当d=GCD(a,b)存在时,必存在 d = s a + t b d=sa+tb d=sa+tb

第12章习题一

习题12.1判断是不是代数系统

证明满足封闭性

习题12.2找出代数系统的单位元、逆元和零元

习题12.3若代数系统只有左单位元,是否唯一?

不是唯一的,当 a ∗ b = b ∗ b = b a*b=b*b=b ab=bb=b

习题12.4证明商系统 [ S ′ ; ⊗ ] [S';\otimes] [S;]​的运算结果与等价类代表元选取无关

证明:

由商系统的定义有
[ a 1 ] ⊗ [ a 2 ] = [ a 1 × a 2 ] [ b 1 ] ⊗ [ b 2 ] = [ b 1 × b 2 ] [a_1]\otimes[a_2]=[a_1\times a_2]\\ [b_1]\otimes[b_2]=[b_1\times b_2] [a1][a2]=[a1×a2][b1][b2]=[b1×b2]
设相容等价关系为~,那么 a 1 × b 1 ~ a 2 × b 2 a_1\times b_1~a_2\times b_2 a1×b1a2×b2
∴   [ a 1 × b 1 ] = [ a 2 × b 2 ] \therefore~[a_1\times b_1]=[a_2\times b_2]  [a1×b1]=[a2×b2]

习题12.5证明等价关系(同余)与整数的加乘是相容的

a 1 , a 2 ∈ [ a ] , b 1 , b 2 ∈ [ b ] a_1,a_2\in[a],b_1,b_2\in[b] a1,a2[a],b1,b2[b]

a 1 = a 2   m o d   k , b 1 = b 2   m o d   k a_1=a_2~mod~k,b_1=b_2~mod~k a1=a2 mod k,b1=b2 mod k

a = k x a + i , c = k x c + i , b = k x b + j , d = k x d + j a=kx_a+i, c=kx_c+i, b=kx_b+j, d=kx_d+j a=kxa+i,c=kxc+i,b=kxb+j,d=kxd+j

易证

习题12.6证明代数系统 [ S ; + ] . [ T ; + ] [S;+].[T;+] [S;+].[T;+]同构

S = { a + b i ∣ a , b ∈ Z } , S = { a + b 2 ∣ a , b ∈ Z } S=\{a+bi|a,b\in Z\},S=\{a+b\sqrt2|a,b\in Z\} S={a+bia,bZ},S={a+b2 a,bZ}

构造同构映射 φ : S → T , φ ( a + b i ) = a + b 2 \varphi:S\to T,\varphi(a+bi)=a+b\sqrt2 φ:ST,φ(a+bi)=a+b2

  1. 证明是同态映射
  2. 证明是双射
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值