【代数结构与数理逻辑(二)】群

第13章 群

13.1 半群,拟群和群

本章讨论的内容为 [ S ; ∗ ] [S;*] [S;]

定义13.1(群)

  1. 可结合(半群
  2. 有单位元(拟群
  3. 每个元有逆元(群无零元)

类比乘法群

定义13.2(Abel群)

群满足交换律

群运算表:如下

img_v3_029v_ee8acd27-5da7-4886-abb0-0481db844b6g

习题13.10:可交换群的等价性定义

[ G ; ⋅ ] [G;\cdot] [G;]为群是可交换的,当且仅当对任意a,b有, ( a b ) 2 = a 2 b 2 (ab)^2=a^2b^2 (ab)2=a2b2

定义13.4(群的阶)

∣ G ∣ = n |G|=n G=n​,称群的阶为n,分有限群和无限群

定理13.1 半群G中n个元素连乘之积,经任意加括号结果不变

证明:

对元素个数进行归纳,证明任意结果均为 ( . . . ( ( a 1 a 2 ) a 3 ) . . . a n ) (...((a_1a_2)a_3)...a_n) (...((a1a2)a3)...an)

由归纳假设,可把k+1个元素之积化简为 ( ( a 1 . . . a i ) ( a i + 1 . . . a k + 1 ) ) ((a_1...a_i)(a_{i+1}...a_{k+1})) ((a1...ai)(ai+1...ak+1))

应用结合律和归纳假设可以证明

由这个定理我们可以将多个元素的运算写成连乘或幂次的形式

定理13.2 群G中, ( a 1 … a n ) − 1 = a n − 1 … a 1 − 1 (a_1\dots a_n)^{-1}=a_n^{-1}\dots a_1^{-1} (a1an)1=an1a11 ( a b ) − 1 = b − 1 a − 1 (ab)^{-1}=b^{-1}a^{-1} (ab)1=b1a1

证明:

由定理13.1知以下等式成立
     ( a 1 … a n ) ( a n − 1 … a 1 − 1 ) = a 1 … ( a n a n − 1 ) … a 1 − 1 = a 1 … a n − 1 e a n − 1 − 1 … a 1 − 1 = e \begin{aligned} &~~~~(a_1\dots a_n)(a_n^{-1}\dots a_1^{-1})\\ &=a_1\dots(a_na_n^{-1})\dots a_1^{-1}\\ &=a_1\dots a_{n-1}e{a_{n-1}}^{-1}\dots a_1^{-1}\\ &=e \end{aligned}     (a1an)(an1a11)=a1(anan1)a11=a1an1ean11a11=e
所以 a n − 1 … a 1 − 1 a_n^{-1}\dots a_1^{-1} an1a11 a 1 … a n a_1\dots a_n a1an之逆元 ( a 1 … a n ) − 1 (a_1\dots a_n)^{-1} (a1an)1

约定指数运算的规律:

a 0 = e a^0=e a0=e

a − k = ( a − 1 ) k , − k a = k ( − a ) a^{-k}=(a^{-1})^k,-ka=k(-a) ak=(a1)k,ka=k(a)

==定理13,3 在群G中存在指数律, a ∈ G , m , n ∈ Z a\in G,m,n\in Z aG,m,nZ==​

  ( 1 ) a m a n = a m + n ( 2 ) ( a m ) n = a m n   ~(1)a^ma^n=a^{m+n}\\ (2)(a^m)^n=a^{mn}~  (1)aman=am+n(2)(am)n=amn 

证明留作习题

定理13.4 当G为交换群时,对任意 a , b ∈ G a,b\in G a,bG
( a b ) n = a n b n (ab)^n=a^nb^n (ab)n=anbn

证明:分类讨论

  1. n=0时,显然成立

  2. n>0时,由交换律和结合律可证

  3. n<0时,设n=-n’,n’>0
    ( a b ) n = ( a b ) − n ′ = ( ( a b ) − 1 ) n ′ = ( b − 1 a − 1 ) n ′ = ( a − 1 b − 1 ) n ′ = ( a − 1 ) n ′ ( b − 1 ) n ′ (用 n ′ > 0 时结论) = a − n ′ b − n ′ = a n b n \begin{aligned} (ab)^n&=(ab)^{-n'}=((ab)^{-1})^{n'}\\ &=(b^{-1}a^{-1})^{n'}\\ &=(a^{-1}b^{-1})^{n'}\\ &=(a^{-1})^{n'}(b^{-1})^{n'}(用n'>0时结论)\\ &=a^{-n'}b^{-n'}=a^nb^n \end{aligned} (ab)n=(ab)n=((ab)1)n=(b1a1)n=(a1b1)n=(a1)n(b1)n(用n>0时结论)=anbn=anbn

定理13.5 群G中存在消去律

( 1 ) 若 a c = b c , 则 a = b ( 2 ) 若 c a = c b ,则 a = b (1)若ac=bc,则a=b\\(2)若ca=cb,则a=b (1)ac=bc,a=b(2)ca=cb,则a=b

证明:乘以逆元

定理(群的等价性定义)

定理13.6 半群G是群,当且仅当

(1)对任意 g ∈ G g\in G gG,存在 e ~ ∈ G \tilde e\in G e~G使 e ~ g = g \tilde eg=g e~g=g,即 e ~ \tilde e e~为左单位元

(2)对任意 g ∈ G g\in G gG,存在 g ~ ∈ G \tilde g\in G g~G使 g ~ g = e ~ \tilde gg=\tilde e g~g=e~,不妨称 g ~ \tilde g g~为g的左逆元

证明:

必要性是显然的,因为单位元同时是左单位元,逆元同时是左逆元

充分性:

首先证 g ~ \tilde g g~同时也是右逆元,对 g ~ \tilde g g~,存在 g ~ ~ \tilde{\tilde g} g~~使得 g ~ ~ g ~ = e ~ \tilde{\tilde g}\tilde g=\tilde e g~~g~=e~
g g ~ = e ~ ( g g ~ ) = ( g ~ ~ g ~ ) ( g g ~ ) = e ~ g\tilde g=\tilde e(g\tilde g)=(\tilde{\tilde g}\tilde g)(g\tilde g)=\tilde e gg~=e~(gg~)=(g~~g~)(gg~)=e~
再证 e ~ \tilde e e~同时是右单位元
g e ~ = g ( g ~ g ) = e ~ g = g g\tilde e=g(\tilde gg)=\tilde eg=g ge~=g(g~g)=e~g=g
半群有单位元和逆元,所以是群

补充:证明环存在唯一一个右单位元,可拓展为单位元

条件拓展为整环,整环满足消去律

a b = ( a e ) b = a ( e b ) ab=(ae)b=a(eb) ab=(ae)b=a(eb)

定理13.7 半群G是群,当且仅当,对任意的 a , b ∈ G a,b\in G a,bG,必存在 x , y ∈ G x,y\in G x,yG,使 a x = b , y a = b ax=b,ya=b ax=b,ya=b

证明:必要性, x = a − 1 b , y = b a − 1 x=a^{-1}b,y=ba^{-1} x=a1b,y=ba1

充分性:

定理条件相当于两个方程在G中有解,取b=a,有ya=a,令ea=y,现证明ea为G的左单位元:

在G中任取元素c,则必有某个x0,使ax0=c,于是有
e a c = e a ( a x 0 ) = ( e a a ) x 0 = a x 0 = c e_ac=e_a(ax_0)=(e_aa)x_0=ax_0=c eac=ea(ax0)=(eaa)x0=ax0=c
记ea e ~ \tilde e e~,其是G的左单位元。再由 y a = e ~ ya=\tilde e ya=e~有解知:对任意的a有左单位元

由定理13.6知,G为群

定理13.8 有限半群G是群,当且仅当运算满足消去律

证明:

必要性,由定理13.5,群满足消去律

充分性:

g 1 ≠ g 2 g_1\neq g_2 g1=g2时,对任一个g有 g 1 g ≠ g 2 g g_1g\neq g_2g g1g=g2g(因为存在消去律)

于是 G = { g 1 g ∣ g ∈ G } G=\{g_1g|g\in G\} G={g1ggG}

这说明对任意的 g ‾ \overline g g存在g使得 g 1 g = g ‾ g_1g=\overline g g1g=g,即 g x = g ‾ gx=\overline g gx=g有解

同理 y g = g ‾ yg=\overline g yg=g在G中也有解,由定理13.7知有限半群是群

第13章习题一

习题13.1指出下述代数系统哪些是半群,哪些是拟群

(3) S ≠ ∅ , [ P ( S ) ; ∪ ] S\neq\varnothing,[P(S);\cup] S=,[P(S);]

拟群有封闭性、可结合、单位元

(3)是拟群(注意:P(S)(幂集)中含 ∅ \varnothing

习题13.4 指出下述代数系统哪些是群,哪些是可交换群

(1) [ Z ; ∘ ] , a ∘ b = a + b − 2 [Z;\circ],a\circ b=a+b-2 [Z;],ab=a+b2

(2) [ Z ; ∘ ] , a ∘ b = a + b − a b [Z;\circ],a\circ b=a+b-ab [Z;],ab=a+bab

(3) 1的n次根关于乘法

(5) [ R ∗ ; ∗ ] , a ∗ b = a 2 b 2 , R ∗ = R − { 0 } [R^*;*],a*b=a^2b^2,R^*=R-\{0\} [R;],ab=a2b2,R=R{0}

(6) [ F [ x ] ; + ] , F [ x ] = { a 0 + … a n x n ∣ a i ∈ R } [F[x];+],F[x]=\{a_0+\dots a_nx^n|a_i\in R\} [F[x];+],F[x]={a0+anxnaiR},+是多项式加法

(7) [ { a + b 2 ∣ a , b ∈ Q } ; + ] [\{a+b\sqrt2|a,b\in Q\};+] [{a+b2 a,bQ};+]

(1)是可交换群

有封闭性、可结合、单位元是2、可交换、逆元是4-a

(2)不是群,群无逆元

单位元为0,元素a=1不存在逆元

(3)是可交换群

1的n次根可表示为 e i ⋅ 2 k π n = c o s 2 k π n + i s i n 2 k π n e^{i\cdot\frac{2k\pi}n}=cos\frac{2k\pi}n+isin\frac{2k\pi}n ein2=cosn2+isinn2

(5)不是群,不满足结合律

( a ∗ b ) ∗ c = a 2 b 2 ∗ c = a 4 b 4 c 2 ≠ a 2 b 4 c 4 = a ∗ ( b ∗ c ) (a*b)*c=a^2b^2*c=a^4b^4c^2\not=a^2b^4c^4=a*(b*c) (ab)c=a2b2c=a4b4c2=a2b4c4=a(bc)

(6)是可交换群

有封闭性、可交换、可结合、由单位元为0、有逆元为 a i ′ = − a i a_i'=-a_i ai=ai即可

(7)

有封闭性、单位元0、有逆元为 − a − b 2 -a-b\sqrt2 ab2

加法满足交换律和结合律

习题13.6证明 T S T_S TS为所有 S → S S\to S SS的一一对应组成的集合(S非空),关于映射的复合运算 ∘ \circ [ T S ; ∘ ] [T_S;\circ] [TS;]​为群; S S S_S SS为所有 S → S S\to S SS的映射

单位元是恒等映射 I I I

S S S_S SS​中任意一个不是一一映射的元素是无逆元的

习题13.10 [ G ; ⋅ ] [G;\cdot] [G;]为群是可交换的,当且仅当对任意a,b有, ( a b ) 2 = a 2 b 2 (ab)^2=a^2b^2 (ab)2=a2b2

证明:

必要性是显然的

充分性:

( a b ) 2 = a ( b a ) b = a ( a b ) b (ab)^2=a(ba)b=a(ab)b (ab)2=a(ba)b=a(ab)b,又群中元素有逆元,两边同时乘以其逆元得 b a = a b ba=ab ba=ab

可知群是可交换的

习题13.11 已知G为不可交换群,证明必存在 a b = b a ab=ba ab=ba,其中 a ≠ e , b ≠ e a\neq e,b\neq e a=e,b=e

证明:

若存在一个元素逆元不是自身, a a − 1 = a − 1 a = e aa^{-1}=a^{-1}a=e aa1=a1a=e,命题成立

若所有元素逆元都是自身,由定理13.2可知

a b = ( a b ) − 1 = b − 1 a − 1 = b a ab=(ab)^{-1}=b^{-1}a^{-1}=ba ab=(ab)1=b1a1=ba

补充 在Z上定义运算*,a*b=a+b-1,Z是否为可交换群

13.2 Transformation group,permutation group and cyclic group

克莱茵四元群 K 4 K_4 K4

关于复合运算 ∘ \circ 构成群,这就是一个置换群的例子(同时也是变换群)

∘ \circ eabr
eeabr
aaerb
bbrea
rrbae

定义13.5(变换群)

所谓的变换,即非空集合S到S的一个映射,当这个映射又是一一对应时,称它为一一变换。我们以 S S S^S SS表示S上映射的全体,T(S)表示所有S上一一变换组成的集合,即
S S = { f ∣ f : S → S } T ( S ) = { f ∣ f ∈ S S 且为一一对应 } S^S=\{f|f:S\to S\}\\ T(S)=\{f|f\in S^S且为一一对应\} SS={ff:SS}T(S)={ffSS且为一一对应}
G ⊆ T ( S ) G\subseteq T(S) GT(S),当 [ G ; ∘ ] [G;\circ] [G;]为群时,称其为变换群;其中 ∘ \circ ​为一一变换的复合运算,并称为变换的乘法

定理13.9 [ T ( S ) ; ⋅ ] [T(S);\cdot] [T(S);]​是一个变换群

定义13.6(置换群)

当S不为空,且为有限集,S上的一一变换就被称为置换。当S上的某些置换关于乘法运算构成群时,称为置换群

所有置换群同时为变换群

定义(n次对称群)

∣ S ∣ = n |S|=n S=n,设 S = { 1 , 2 , … , n } S=\{1,2,\dots,n\} S={1,2,,n},其置换的全体组成的集合一般记为 S n S_n Sn​,类似定理13.9知其是一个置换群,称为n次对称群

S上的置换群 σ ∈ S n \sigma\in S_n σSn,习惯写成
σ = ( 1 2 … n σ ( 1 ) σ ( 2 ) … σ ( n ) ) \sigma=\left(\begin{matrix}1&2&\dots&n\\\sigma(1)&\sigma(2)&\dots&\sigma(n)\end{matrix}\right) σ=(1σ(1)2σ(2)nσ(n))


σ = ( i 1 i 2 … i n σ ( i 1 ) σ ( i 2 ) … σ ( i n ) ) \sigma=\left(\begin{matrix}i_1&i_2&\dots&i_n\\\sigma(i_1)&\sigma(i_2)&\dots&\sigma(i_n)\end{matrix}\right) σ=(i1σ(i1)i2σ(i2)inσ(in))
表示置换 σ \sigma σ之下i的象为 σ ( i ) ∈ S \sigma(i)\in S σ(i)S。容易证明恒等置换e是
σ = ( 1 2 … n 1 2 … n ) \sigma=\left(\begin{matrix}1&2&\dots&n\\1&2&\dots&n\end{matrix}\right) σ=(1122nn)
置换 σ \sigma σ的逆置换的形式也容易表示,这里不再赘述

例13.9 写出三次对称群 S 3 S_3 S3

解:设S={1,2,3},于是 ∣ S 3 ∣ = 3 ! = 6 |S_3|=3! =6 S3=3!=6,这6个置换分别是
e = ( 1 2 3 1 2 3 ) , σ 1 = ( 1 2 3 1 3 2 ) , σ 2 = ( 1 2 3 2 1 3 ) σ 3 = ( 1 2 3 3 2 1 ) , σ 4 = ( 3 1 2 1 3 2 ) , σ 5 = ( 1 2 3 2 3 1 ) e=\left(\begin{matrix}1&2&3\\1&2&3\end{matrix}\right),\sigma_1=\left(\begin{matrix}1&2&3\\1&3&2\end{matrix}\right),\sigma_2=\left(\begin{matrix}1&2&3\\2&1&3\end{matrix}\right)\\ \sigma_3=\left(\begin{matrix}1&2&3\\3&2&1\end{matrix}\right),\sigma_4=\left(\begin{matrix}3&1&2\\1&3&2\end{matrix}\right),\sigma_5=\left(\begin{matrix}1&2&3\\2&3&1\end{matrix}\right)\\ e=(112233),σ1=(112332),σ2=(122133)σ3=(132231),σ4=(311322),σ5=(122331)
其群运算可见下表

img_v3_02a2_b5e37724-f0b3-498f-8241-96365bb44f5g

定义13.7(循环置换)

形如
σ = ( i 1 i 2 … i d − 1 i d i d + 1 … i n i 2 i 3 … i d i 1 i d + 1 … i n ) \sigma=\left(\begin{matrix}i_1&i_2&\dots&i_{d-1}&i_d&i_{d+1}&\dots&i_n\\i_2&i_3&\dots&i_d&i_1&i_{d+1}&\dots&i_n\end{matrix}\right) σ=(i1i2i2i3id1ididi1id+1id+1inin)
的置换称为循环置换,称其循环长度为d。特别当 d = 2 d=2 d=2​时称其为对换

上述 σ \sigma σ由可写成 σ = ( i 1    ⁣ ⋯   i d ) \sigma=(i_1~\dotsi~i_d) σ=(i1  id)

例13.10
     ( 1 2 3 4 5 6 7 2 6 3 1 5 4 7 ) = ( 1 2 6 4 3 5 7 2 6 4 1 3 5 7 ) = ( 1 2 6 4 ) \begin{aligned} &\ \ \ \ \left(\begin{matrix}1&2&3&4&5&6&7\\2&6&3&1&5&4&7\end{matrix}\right)\\ &=\left(\begin{matrix}1&2&6&4&3&5&7\\2&6&4&1&3&5&7\end{matrix}\right)\\ &=\left(\begin{matrix}1&2&6&4\end{matrix}\right) \end{aligned}     (12263341556477)=(12266441335577)=(1264)
是一个长度为4的循环置换

定理13.10 S n S_n Sn​中的任意一个置换均可分解为不含公共元的若干循环置换的乘积

证明:对n作归纳证明

归纳基础:n=1时,结论显然成立

归纳假设:当 ∣ S ∣ ≤ n − 1 |S|\le n-1 Sn1时,结论成立

归纳步骤:当 ∣ S ∣ = n |S|=n S=n时,任取 S n S_n Sn中的置换 σ \sigma σ

从元素1出发取 σ \sigma σ上的一个循环置换,设为 ( 1 , j 1 , j 2 ,  ⁣ ⋯   , j k − 1 ) (1,j_1,j_2,\dotsi,j_{k-1}) (1,j1,j2,,jk1),于是
σ = ( 1 , j 1 , j 2 ,  ⁣ ⋯   , j k − 1 ) ⋅ ( 1 j 1  ⁣ ⋯ j k − 1 j k  ⁣ ⋯ j n − 1 1 j 1  ⁣ ⋯ j k − 1 σ ( j k )  ⁣ ⋯ σ ( j n − 1 ) ) \sigma=(1,j_1,j_2,\dotsi,j_{k-1})\cdot\left(\begin{matrix}1&j_1&\dotsi&j_{k-1}&j_k&\dotsi&j_{n-1}\\1&j_1&\dotsi&j_{k-1}&\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right) σ=(1,j1,j2,,jk1)(11j1j1jk1jk1jkσ(jk)jn1σ(jn1))
分析
σ = ( 1 j 1  ⁣ ⋯ j k − 1 j k  ⁣ ⋯ j n − 1 1 j 1  ⁣ ⋯ j k − 1 σ ( j k )  ⁣ ⋯ σ ( j n − 1 ) ) = ( j k  ⁣ ⋯ j n − 1 σ ( j k )  ⁣ ⋯ σ ( j n − 1 ) ) \sigma=\left(\begin{matrix}1&j_1&\dotsi&j_{k-1}&j_k&\dotsi&j_{n-1}\\1&j_1&\dotsi&j_{k-1}&\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right)=\left(\begin{matrix}j_k&\dotsi&j_{n-1}\\\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right) σ=(11j1j1jk1jk1jkσ(jk)jn1σ(jn1))=(jkσ(jk)jn1σ(jn1))
可以看作n-k个元素的置换,按归纳假设可以分解成若干不含公共元的循环置换

推论13.1 任意一个置换可以分解为若干对换的乘积

证明任意循环置换可分解为对换的乘积,再由定理13.10得证
( i 1    i 2    …    i d ) = ( i 1    i 2 ) ( i 1 2   i 3 )  ⁣ ⋯ ( i d − 1    i d ) (i_1~\ i_2~\ \dots\ \ i_d)=(i_1\ \ i_2)(i_12 \ i_3)\dotsi(i_{d-1}\ \ i_d) (i1  i2    id)=(i1  i2)(i12 i3)(id1  id)

例13.11 把置换写成循环置换的积和对换的积

σ = ( 1 2 3 4 5 6 4 3 1 2 6 5 ) = ( 1     4     2     3 ) ( 5     6 ) = ( 1     4 ) ( 4     2 ) ( 2     3 ) ( 5     6 ) \begin{aligned} \sigma&=\left(\begin{matrix}1&2&3&4&5&6\\4&3&1&2&6&5\end{matrix}\right)\\ &=(1~~~4~~~2~~~3)(5~~~6)\\ &=(1~~~4)(4~~~2)(2~~~3)(5~~~6) \end{aligned} σ=(142331425665)=(1   4   2   3)(5   6)=(1   4)(4   2)(2   3)(5   6)

从例13.11中可以看出(1)被分解为偶数个对换的乘积,(2)被分解为奇数个对换的乘积,并且在(2)中写出了两种不同的对换乘积,它们的奇偶性相同。由此导出定义和定理。

定理13.11 任意一个置换可被分解为对换的乘积,这种分解不是唯一的,但对换数量的奇偶性唯一

定义13.8(奇\偶置换)

在置换的对换分解式中,对换因子的个数是偶数时称为偶置换,否则称奇置换。

推论13.2 一个长度为k的循环置换,当k为奇数时,它是一个偶置换;当k为偶数时,它是一个奇置换。

推论13.3 每个偶置换均可被分解为若干长度为3的循环置换的乘积,循环置换中可含公共元

证明:
     ( a     b ) ( c     d ) = ( a     b ) ( b     c ) ( b     c ) ( c     d ) = ( b     c     a ) ( c     d     b ) \begin{aligned}&~~~~(a~~~b)(c~~~d)\\ &=(a~~~b)(b~~~c)(b~~~c)(c~~~d)\\ &=(b~~~c~~~a)(c~~~d~~~b)\end{aligned}     (a   b)(c   d)=(a   b)(b   c)(b   c)(c   d)=(b   c   a)(c   d   b)
注意:(b c a)和(a b c)实际上等价

推论13.4 S n S_n Sn中的奇、偶置换在置换的乘法运算下,其奇偶性由下表给出

⋅ \cdot 偶置换奇置换
偶置换奇置换奇置换
奇置换奇置换偶置换

且奇置换的逆是奇置换,偶置换的逆是偶置换;奇置换相乘是偶置换,所以奇置换全体不构成代数系统

由于恒等置换是0个对换的乘积,我们视它为偶置换

定义13.9(n次交待群)

推论13.5 对称群 S n S_n Sn中所有的偶值换组成的集合,记为 A n A_n An,关于置换的乘法构成群

记为 [ A n ; ⋅ ] [A_n;\cdot] [An;],称n次交待群

由推论13.4以及置换群满足消去律知: S n S_n Sn中奇、偶置换各占一半。所以 A n A_n An的阶为 ⌈ n ! / 2 ⌉ \lceil n!/2\rceil n!/2

例13.12根据例13.9给出的 [ S 3 ; ⋅ ] [S_3;\cdot] [S3;],它的三次交待群是

A 3 = { ( 1 ) , ( 1    2    3 ) , ( 3    2    1 ) } A_3=\{(1),(1~~2~~3),(3~~2~~1)\} A3={(1),(1  2  3),(3  2  1)}

其中 ( 1 ) (1) (1)表示恒等置换

例13.13 设群 G = { g 1 ,  ⁣ ⋯ g n } G=\{g_1,\dotsi g_n\} G={g1,gn},映射 σ g : G → G , σ g ( g ′ ) = g g ′ \sigma_g:G\to G,\sigma_g(g')=gg' σg:GGσg(g)=gg,则
Σ = { σ g ∣ g ∈ G } \Sigma=\{\sigma_g|g\in G\} Σ={σggG}
关于映射的乘法构成置换群

先分析 Σ \Sigma Σ中映射的本质,用置换的表示法即为
σ g i = ( g 1  ⁣ ⋯ g j  ⁣ ⋯ g n g i g 1  ⁣ ⋯ g i g j  ⁣ ⋯ g i g n ) \sigma_{g_i}=\left(\begin{matrix}g_1&\dotsi&g_j&\dotsi&g_n\\g_ig_1&\dotsi&g_ig_j&\dotsi&g_ig_n\end{matrix}\right) σgi=(g1gig1gjgigjgngign)
由此可知 Σ \Sigma Σ的确为置换的集合

再证明 [ Σ ; ⋅ ] [\Sigma;\cdot] [Σ;]为群

  1. σ g σ g ′ ( x ) = g g ′ x = σ g g ′ ( x ) \sigma_g\sigma_{g'}(x)=gg'x=\sigma_{gg'}(x) σgσg(x)=ggx=σgg(x),满足封闭性
  2. σ e \sigma_e σe是恒等置换,为单位元
  3. σ g − 1 \sigma_{g^{-1}} σg1为逆元
  4. 由1.置换的乘法转化为群的乘法,是可结合的

定义13.10(元素的阶)

使 a n = e a^n=e an=e的最小正整数,如果a的任意两个幂不相等,则a的阶是无限的

定理13.12* G为群, a ∈ G a\in G aG且阶为n,有 a m = e a^m=e am=e当且仅当 n ∣ m n|m nm

定义13.11(循环群)

群G中若有生成元 a a a,对任意 g ∈ G g\in G gG g = a k , k ∈ Z g=a^k,k\in Z g=ak,kZ,则称G由 a a a生成,是循环群,记为 G ( a ) G(a) G(a)

当G的阶有限时称为有限循环群,否则称无限循环群

由定义可以知道,当G为n阶循环群时
G = { a 0 = e , a 1 , a 2 ,  ⁣ ⋯   , a n − 1 } G=\{a^0=e,a^1,a^2,\dotsi,a^{n-1}\} G={a0=e,a1,a2,,an1}
当G为无限循环群时
G = {  ⁣ ⋯   , a − 1 , a 0 = e , a 1 , a 2 ,  ⁣ ⋯   } G=\{\dotsi,a^{-1},a^0=e,a^1,a^2,\dotsi\} G={,a1,a0=e,a1,a2,}

定理 设有限群G的阶为n,若存在 g ∈ G g\in G gG g g g的阶也为n,则G可以由 g g g​生成

例13.14证明 [ Z ; + ] [Z;+] [Z;+] [ Z n ; ⊕ ] [Z_n;\oplus] [Zn;]都是循环群,并讨论生成元的阶

(1)对任意 k ∈ Z , k ⋅ 1 = k k\in Z,k\cdot 1=k kZ,k1=k,所以1是Z的一个生成元,同理-1也是。 ± 1 \pm 1 ±1的阶均为无限的

(2)对任意 [ k ] ∈ Z n [k]\in Z_n [k]Zn [ k ] = k [ 1 ] [k]=k[1] [k]=k[1],所以 Z n = ( [ 1 ] ) Z_n=([1]) Zn=([1]),[1]是n阶的

循环群最为一目了然,因为从同构的意义上说,循环群只有两个

定理13.13 G为循环群, a a a为其一生成元,则G的结构完全由元素 a a a的阶来决定

(1) 当a为无限阶时,G同构于 [ Z ; + ] [Z;+] [Z;+]

(2) 当a的阶为n时,G同构于同余类加法循环群 [ Z n ; ⊕ ] [Z_n;\oplus] [Zn;]

证明:

映射 ϕ ( a k ) = k \phi(a^k)=k ϕ(ak)=k,证明是一一对应和同态映射

例13.15证明群G同构于 [ Z 5 ; ⊕ ] [Z_5;\oplus] [Z5;]

即证明G为五阶循环群,由定理13.13知 G ≅ Z 5 G\cong Z_5 GZ5

第13章习题二

习题13.12将下述置换分解为不含公共元的循环置换,再进一步分解为对换的乘积

( 1 ) ( 1 2 3 4 5 6 1 3 2 6 4 5 ) (1)\left(\begin{matrix}1&2&3&4&5&6\\1&3&2&6&4&5\end{matrix}\right) (1)(112332465465)

( 2 ) ( 3 7 6 5 2 1 4 7 6 5 4 3 2 1 ) (2)\left(\begin{matrix}3&7&6&5&2&1&4\\7&6&5&4&3&2&1\end{matrix}\right) (2)(37766554231241)

( 3 ) ( a b c d e f f a e d c b ) (3)\left(\begin{matrix}a&b&c&d&e&f\\f&a&e&d&c&b\end{matrix}\right) (3)(afbaceddecfb)

( 1 ) ( 1 2 3 4 5 6 1 3 2 6 4 5 ) = ( 2 3 4 6 5 1 3 2 6 5 4 1 ) = ( 2 3 ) ( 4 6 5 ) = ( 2     3 ) ( 4     6 ) ( 6     5 ) ( 2 ) ( 3 7 6 5 2 1 4 7 6 5 4 3 2 1 ) = ( 3 7 6 5 4 1 2 7 6 5 4 1 2 3 ) = ( 3     7     6     5     4     1     2 ) = 略 ( 3 ) ( a b c d e f f a e d c b ) = ( a f b c e d f b a e c d ) = ( a     f     b ) ( c     e ) = ( a     f ) ( f     b ) ( c     e ) \begin{aligned} &(1)\left(\begin{matrix}1&2&3&4&5&6\\1&3&2&6&4&5\end{matrix}\right)=\left(\begin{matrix}2&3&4&6&5&1\\3&2&6&5&4&1\end{matrix}\right) =\left(\begin{matrix}2&3\end{matrix}\right)\left(\begin{matrix}4&6&5\end{matrix}\right)=(2~~~3)(4~~~6)(6~~~5)\\ &(2)\left(\begin{matrix}3&7&6&5&2&1&4\\7&6&5&4&3&2&1\end{matrix}\right)=\left(\begin{matrix}3&7&6&5&4&1&2\\7&6&5&4&1&2&3\end{matrix}\right)=(3~~~7~~~6~~~5~~~4~~~1~~~2)=略\\ &(3)\left(\begin{matrix}a&b&c&d&e&f\\f&a&e&d&c&b\end{matrix}\right)=\left(\begin{matrix}a&f&b&c&e&d\\f&b&a&e&c&d\end{matrix}\right)=(a~~~f~~~b)(c~~~e)=(a~~~f)(f~~~b)(c~~~e) \end{aligned} (1)(112332465465)=(233246655411)=(23)(465)=(2   3)(4   6)(6   5)(2)(37766554231241)=(37766554411223)=(3   7   6   5   4   1   2)=(3)(afbaceddecfb)=(affbbaceecdd)=(a   f   b)(c   e)=(a   f)(f   b)(c   e)

习题13.13 已知置换: δ = ( 1    2     ⁣ ⋯    n ) , S = ( 1    2    3 ) ( 4    5 ) , T = ( 1    4 ) ( 3    2 ) ( 1    6 ) \delta=(1~~2~~\dotsi~~n),S=(1~~2~~3)(4~~5),T=(1~~4)(3~~2)(1~~6) δ=(1  2    n)S=(1  2  3)(4  5),T=(1  4)(3  2)(1  6),求:

(1) δ − 1 \delta^{-1} δ1,(2) S 2 ⋅ T S^2\cdot T S2T,(3) ( S ⋅ T ) − 1 (S\cdot T)^{-1} (ST)1

(1) δ − 1 = ( 2 3  ⁣ ⋯ n 1 1 2  ⁣ ⋯ n − 1 n ) \delta^{-1}=\left(\begin{matrix}2&3&\dotsi&n&1\\1&2&\dotsi&n-1&n\end{matrix}\right) δ1=(2132nn11n)

(2)
S 2 = ( 1    2    3 ) ( 4    5 ) ( 1    2    3 ) ( 4    5 ) = ( 1    3    2 ) S 2 ⋅ T = ( 1    3    2 ) ( 1    4 ) ( 3    2 ) ( 1    6 ) = ( 1    3 ) ( 1    4 ) ( 1    6 ) = ( 1    4    3 ) ( 1    6 ) = ( 4    3    1    6 ) \begin{aligned} &S^2=(1~~2~~3)(4~~5)(1~~2~~3)(4~~5)=(1~~3~~2)\\ &S^2\cdot T=(1~~3~~2)(1~~4)(3~~2)(1~~6)=(1~~3)(1~~4)(1~~6)=(1~~4~~3)(1~~6)=(4~~3~~1~~6) \end{aligned} S2=(1  2  3)(4  5)(1  2  3)(4  5)=(1  3  2)S2T=(1  3  2)(1  4)(3  2)(1  6)=(1  3)(1  4)(1  6)=(1  4  3)(1  6)=(4  3  1  6)
(3)
S ⋅ T = ( 1    6    5    4    2 ) ( S ⋅ T ) − 1 = ( 1    2    4    5    6 ) S\cdot T=(1~~6~~5~~4~~2)\\ (S\cdot T)^{-1}=(1~~2~~4~~5~~6) ST=(1  6  5  4  2)(ST)1=(1  2  4  5  6)
规律:置换群的逆就是反过来读

习题13.20* G为群, a , b ∈ G a,b\in G a,bG,已知ab=ba,a的阶为n,b的阶为m,证明:

(1) ( n , m ) = 1 (n,m)=1 (n,m)=1时,ab的阶为nm

(2) ( n , m ) ≠ 1 , 且 ( a ) ∩ ( b ) = { e } (n,m)\neq1,且(a)\cap(b)=\{e\} (n,m)=1,(a)(b)={e}时,ab的阶为n,m之最小公倍数LCM(n,m)。

(1)

必要性显然

充分性:

设ab的阶为p

由于 ( a b ) p = e → a p = ( b p ) − 1 (ab)^p=e\to a^p=(b^p)^{-1} (ab)p=eap=(bp)1 a p m = ( b p ) − m = e a^{pm}=(b^p)^{-m}=e apm=(bp)m=e

所以n|pm,又(n,m)=1,所以 n ∣ p n|p np,同理 m ∣ p m|p mp,得证

(2)

充分性:

( a ) ∩ ( b ) = { e } (a)\cap(b)=\{e\} (a)(b)={e}得出 a i b j = e a^ib^j=e aibj=e当且仅当 a i = b j = e a^i=b^j=e ai=bj=e

所以 n ∣ p , m ∣ p n|p,m|p np,mp,也说明LCM(n,m)|p,得证

习题13.27 G = ( a ) , ∣ G ∣ = n G=(a),|G|=n G=(a)G=n,证明

(1)它的任意子群是循环群

(2)它的任意元的阶可以整除n

(3)设d为n的因子,则G必存在唯一一个阶为d的子群

(1)

(e)是循环群

假设任意子群中次数最小的元素 a ∗ = a m a^*=a^m a=am

若子群中存在次数不被m互素的元 a n a^n an,则要么n<m,要么n与m的差小与m,矛盾

以任意子群可由其中次数最小的元素生成

(2)

假设x的阶为p, x = a m x=a^m x=am, x n = ( a m ) n = ( a n ) m = e x^n=(a^m)^n=(a^n)^m=e xn=(am)n=(an)m=e​,由定理13.12,则 p ∣ n p|n pn

(3)

存在性:设n=d*b,存在子群 H = { a b , a 2 b ,  ⁣ ⋯   , a d b = e } H=\{a^b,a^{2b},\dotsi,a^{db}=e\} H={ab,a2b,,adb=e}

唯一性:假设 H ′ = ( a m ) H'=(a^m) H=(am)同为阶为d的子群,则 a m d = e = ( a n ) k a^{md}=e=(a^{n})^k amd=e=(an)k,所以 ( n d = b ) ∣ m (\frac{n}{d}=b)|m (dn=b)m

所以 a m ∈ H a^m\in H amH,即 H ′ ∈ H H'\in H HH

∣ H ∣ = ∣ H ′ ∣ = d |H|=|H'|=d H=H=d,所以H=H’

习题13.28 G = ( a ) , b = a k , ∣ G ∣ = n G=(a),b=a^k,|G|=n G=(a),b=ak,G=n,当b为G的生成元时k具有什么性质;当b为G的一个子群的生成元时k又具有什么性质?

(1)

当b是G的生成元时, b n = e = a m n b^n=e=a^{mn} bn=e=amn,且 a k i ≠ e = a m n a^{ki}\neq e=a^{mn} aki=e=amn,说明k与n无1外的公因数

或者:假设k与n有公因数d

( a k ) n d = ( a t ) n = e (a^k)^{\frac nd}=(a^t)^n=e (ak)dn=(at)n=e,则d只能为1

(2)

当b是G的一个子群的生成元时,阶为p,由拉格朗日定理,任意子群的阶整除n

( a k ) p = e = a m n (a^k)^p=e=a^{mn} (ak)p=e=amn,即 n ∣ k p n|kp nkp,又 n = p r n=pr n=pr,其中r是子群的指数,因此 r ∣ k r|k rk

定理:子群在G中的指数整除生成元的次数

补充1* 群G是阶偶数的有限群,则G中阶为2的元素个数一定是奇数

分类讨论

(1)阶为1的元素:e

(2)阶大于2的元素成对出现:

如果 a a a的阶大于2,那么 a − 1 ≠ a a^{-1}\neq a a1=a,否则 a a − 1 = e aa^{-1}=e aa1=e矛盾

a − 1 a^{-1} a1的阶也大于2,因为 a − 1 = a p − 1 a^{-1}=a^{p-1} a1=ap1与p是互素的

(3)阶等于2的元素:奇数个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值