目录
第13章 群
13.1 半群,拟群和群
本章讨论的内容为 [ S ; ∗ ] [S;*] [S;∗]
定义13.1(群)
- 可结合(半群)
- 有单位元(拟群)
- 每个元有逆元(群无零元)
类比乘法群
定义13.2(Abel群)
群满足交换律
群运算表:如下
习题13.10
:可交换群的等价性定义[ G ; ⋅ ] [G;\cdot] [G;⋅]为群是可交换的,当且仅当对任意a,b有, ( a b ) 2 = a 2 b 2 (ab)^2=a^2b^2 (ab)2=a2b2
定义13.4(群的阶)
∣ G ∣ = n |G|=n ∣G∣=n,称群的阶为n,分有限群和无限群
定理13.1 半群G中n个元素连乘之积,经任意加括号结果不变
证明:
对元素个数进行归纳,证明任意结果均为 ( . . . ( ( a 1 a 2 ) a 3 ) . . . a n ) (...((a_1a_2)a_3)...a_n) (...((a1a2)a3)...an)
由归纳假设,可把k+1个元素之积化简为 ( ( a 1 . . . a i ) ( a i + 1 . . . a k + 1 ) ) ((a_1...a_i)(a_{i+1}...a_{k+1})) ((a1...ai)(ai+1...ak+1))
应用结合律和归纳假设可以证明
由这个定理我们可以将多个元素的运算写成连乘或幂次的形式
定理13.2 群G中, ( a 1 … a n ) − 1 = a n − 1 … a 1 − 1 (a_1\dots a_n)^{-1}=a_n^{-1}\dots a_1^{-1} (a1…an)−1=an−1…a1−1 ( a b ) − 1 = b − 1 a − 1 (ab)^{-1}=b^{-1}a^{-1} (ab)−1=b−1a−1
证明:
由定理13.1知以下等式成立
( a 1 … a n ) ( a n − 1 … a 1 − 1 ) = a 1 … ( a n a n − 1 ) … a 1 − 1 = a 1 … a n − 1 e a n − 1 − 1 … a 1 − 1 = e \begin{aligned} &~~~~(a_1\dots a_n)(a_n^{-1}\dots a_1^{-1})\\ &=a_1\dots(a_na_n^{-1})\dots a_1^{-1}\\ &=a_1\dots a_{n-1}e{a_{n-1}}^{-1}\dots a_1^{-1}\\ &=e \end{aligned} (a1…an)(an−1…a1−1)=a1…(anan−1)…a1−1=a1…an−1ean−1−1…a1−1=e
所以 a n − 1 … a 1 − 1 a_n^{-1}\dots a_1^{-1} an−1…a1−1是 a 1 … a n a_1\dots a_n a1…an之逆元 ( a 1 … a n ) − 1 (a_1\dots a_n)^{-1} (a1…an)−1
约定指数运算的规律:
a 0 = e a^0=e a0=e
a − k = ( a − 1 ) k , − k a = k ( − a ) a^{-k}=(a^{-1})^k,-ka=k(-a) a−k=(a−1)k,−ka=k(−a)
==定理13,3 在群G中存在指数律, a ∈ G , m , n ∈ Z a\in G,m,n\in Z a∈G,m,n∈Z==
( 1 ) a m a n = a m + n ( 2 ) ( a m ) n = a m n ~(1)a^ma^n=a^{m+n}\\ (2)(a^m)^n=a^{mn}~ (1)aman=am+n(2)(am)n=amn
证明留作习题
定理13.4 当G为交换群时,对任意
a
,
b
∈
G
a,b\in G
a,b∈G有
(
a
b
)
n
=
a
n
b
n
(ab)^n=a^nb^n
(ab)n=anbn
证明:分类讨论
n=0时,显然成立
n>0时,由交换律和结合律可证
n<0时,设n=-n’,n’>0
( a b ) n = ( a b ) − n ′ = ( ( a b ) − 1 ) n ′ = ( b − 1 a − 1 ) n ′ = ( a − 1 b − 1 ) n ′ = ( a − 1 ) n ′ ( b − 1 ) n ′ (用 n ′ > 0 时结论) = a − n ′ b − n ′ = a n b n \begin{aligned} (ab)^n&=(ab)^{-n'}=((ab)^{-1})^{n'}\\ &=(b^{-1}a^{-1})^{n'}\\ &=(a^{-1}b^{-1})^{n'}\\ &=(a^{-1})^{n'}(b^{-1})^{n'}(用n'>0时结论)\\ &=a^{-n'}b^{-n'}=a^nb^n \end{aligned} (ab)n=(ab)−n′=((ab)−1)n′=(b−1a−1)n′=(a−1b−1)n′=(a−1)n′(b−1)n′(用n′>0时结论)=a−n′b−n′=anbn
定理13.5 群G中存在消去律
( 1 ) 若 a c = b c , 则 a = b ( 2 ) 若 c a = c b ,则 a = b (1)若ac=bc,则a=b\\(2)若ca=cb,则a=b (1)若ac=bc,则a=b(2)若ca=cb,则a=b
证明:乘以逆元
定理(群的等价性定义)
定理13.6 半群G是群,当且仅当
(1)对任意 g ∈ G g\in G g∈G,存在 e ~ ∈ G \tilde e\in G e~∈G使 e ~ g = g \tilde eg=g e~g=g,即 e ~ \tilde e e~为左单位元
(2)对任意 g ∈ G g\in G g∈G,存在 g ~ ∈ G \tilde g\in G g~∈G使 g ~ g = e ~ \tilde gg=\tilde e g~g=e~,不妨称 g ~ \tilde g g~为g的左逆元
证明:
必要性是显然的,因为单位元同时是左单位元,逆元同时是左逆元
充分性:
首先证 g ~ \tilde g g~同时也是右逆元,对 g ~ \tilde g g~,存在 g ~ ~ \tilde{\tilde g} g~~使得 g ~ ~ g ~ = e ~ \tilde{\tilde g}\tilde g=\tilde e g~~g~=e~
g g ~ = e ~ ( g g ~ ) = ( g ~ ~ g ~ ) ( g g ~ ) = e ~ g\tilde g=\tilde e(g\tilde g)=(\tilde{\tilde g}\tilde g)(g\tilde g)=\tilde e gg~=e~(gg~)=(g~~g~)(gg~)=e~
再证 e ~ \tilde e e~同时是右单位元
g e ~ = g ( g ~ g ) = e ~ g = g g\tilde e=g(\tilde gg)=\tilde eg=g ge~=g(g~g)=e~g=g
半群有单位元和逆元,所以是群
补充:证明环存在唯一一个右单位元,可拓展为单位元
条件拓展为整环,整环满足消去律
a b = ( a e ) b = a ( e b ) ab=(ae)b=a(eb) ab=(ae)b=a(eb)
定理13.7 半群G是群,当且仅当,对任意的 a , b ∈ G a,b\in G a,b∈G,必存在 x , y ∈ G x,y\in G x,y∈G,使 a x = b , y a = b ax=b,ya=b ax=b,ya=b
证明:必要性, x = a − 1 b , y = b a − 1 x=a^{-1}b,y=ba^{-1} x=a−1b,y=ba−1
充分性:
定理条件相当于两个方程在G中有解,取b=a,有ya=a,令ea=y,现证明ea为G的左单位元:
在G中任取元素c,则必有某个x0,使ax0=c,于是有
e a c = e a ( a x 0 ) = ( e a a ) x 0 = a x 0 = c e_ac=e_a(ax_0)=(e_aa)x_0=ax_0=c eac=ea(ax0)=(eaa)x0=ax0=c
记ea为 e ~ \tilde e e~,其是G的左单位元。再由 y a = e ~ ya=\tilde e ya=e~有解知:对任意的a有左单位元由定理13.6知,G为群
定理13.8 有限半群G是群,当且仅当运算满足消去律
证明:
必要性,由定理13.5,群满足消去律
充分性:
当 g 1 ≠ g 2 g_1\neq g_2 g1=g2时,对任一个g有 g 1 g ≠ g 2 g g_1g\neq g_2g g1g=g2g(因为存在消去律)
于是 G = { g 1 g ∣ g ∈ G } G=\{g_1g|g\in G\} G={g1g∣g∈G}
这说明对任意的 g ‾ \overline g g存在g使得 g 1 g = g ‾ g_1g=\overline g g1g=g,即 g x = g ‾ gx=\overline g gx=g有解
同理 y g = g ‾ yg=\overline g yg=g在G中也有解,由定理13.7知有限半群是群
第13章习题一
习题13.1
指出下述代数系统哪些是半群,哪些是拟群
(3) S ≠ ∅ , [ P ( S ) ; ∪ ] S\neq\varnothing,[P(S);\cup] S=∅,[P(S);∪]
拟群有封闭性、可结合、单位元
(3)是拟群(注意:P(S)(幂集)中含 ∅ \varnothing ∅)
习题13.4
指出下述代数系统哪些是群,哪些是可交换群
(1) [ Z ; ∘ ] , a ∘ b = a + b − 2 [Z;\circ],a\circ b=a+b-2 [Z;∘],a∘b=a+b−2
(2) [ Z ; ∘ ] , a ∘ b = a + b − a b [Z;\circ],a\circ b=a+b-ab [Z;∘],a∘b=a+b−ab
(3) 1的n次根关于乘法
(5) [ R ∗ ; ∗ ] , a ∗ b = a 2 b 2 , R ∗ = R − { 0 } [R^*;*],a*b=a^2b^2,R^*=R-\{0\} [R∗;∗],a∗b=a2b2,R∗=R−{0}
(6) [ F [ x ] ; + ] , F [ x ] = { a 0 + … a n x n ∣ a i ∈ R } [F[x];+],F[x]=\{a_0+\dots a_nx^n|a_i\in R\} [F[x];+],F[x]={a0+…anxn∣ai∈R},+是多项式加法
(7) [ { a + b 2 ∣ a , b ∈ Q } ; + ] [\{a+b\sqrt2|a,b\in Q\};+] [{a+b2∣a,b∈Q};+]
(1)是可交换群
有封闭性、可结合、单位元是2、可交换、逆元是4-a
(2)不是群,群无逆元
单位元为0,元素a=1不存在逆元
(3)是可交换群
1的n次根可表示为 e i ⋅ 2 k π n = c o s 2 k π n + i s i n 2 k π n e^{i\cdot\frac{2k\pi}n}=cos\frac{2k\pi}n+isin\frac{2k\pi}n ei⋅n2kπ=cosn2kπ+isinn2kπ
(5)不是群,不满足结合律
( a ∗ b ) ∗ c = a 2 b 2 ∗ c = a 4 b 4 c 2 ≠ a 2 b 4 c 4 = a ∗ ( b ∗ c ) (a*b)*c=a^2b^2*c=a^4b^4c^2\not=a^2b^4c^4=a*(b*c) (a∗b)∗c=a2b2∗c=a4b4c2=a2b4c4=a∗(b∗c)
(6)是可交换群
有封闭性、可交换、可结合、由单位元为0、有逆元为 a i ′ = − a i a_i'=-a_i ai′=−ai即可
(7)
有封闭性、单位元0、有逆元为 − a − b 2 -a-b\sqrt2 −a−b2
加法满足交换律和结合律
习题13.6
证明
T
S
T_S
TS为所有
S
→
S
S\to S
S→S的一一对应组成的集合(S非空),关于映射的复合运算
∘
\circ
∘,
[
T
S
;
∘
]
[T_S;\circ]
[TS;∘]为群;
S
S
S_S
SS为所有
S
→
S
S\to S
S→S的映射
单位元是恒等映射 I I I
S S S_S SS中任意一个不是一一映射的元素是无逆元的
习题13.10
[
G
;
⋅
]
[G;\cdot]
[G;⋅]为群是可交换的,当且仅当对任意a,b有,
(
a
b
)
2
=
a
2
b
2
(ab)^2=a^2b^2
(ab)2=a2b2
证明:
必要性是显然的
充分性:
( a b ) 2 = a ( b a ) b = a ( a b ) b (ab)^2=a(ba)b=a(ab)b (ab)2=a(ba)b=a(ab)b,又群中元素有逆元,两边同时乘以其逆元得 b a = a b ba=ab ba=ab
可知群是可交换的
习题13.11
已知G为不可交换群,证明必存在
a
b
=
b
a
ab=ba
ab=ba,其中
a
≠
e
,
b
≠
e
a\neq e,b\neq e
a=e,b=e
证明:
若存在一个元素逆元不是自身, a a − 1 = a − 1 a = e aa^{-1}=a^{-1}a=e aa−1=a−1a=e,命题成立
若所有元素逆元都是自身,由定理13.2可知
a b = ( a b ) − 1 = b − 1 a − 1 = b a ab=(ab)^{-1}=b^{-1}a^{-1}=ba ab=(ab)−1=b−1a−1=ba
补充
在Z上定义运算*,a*b=a+b-1,Z是否为可交换群
13.2 Transformation group,permutation group and cyclic group
克莱茵四元群 K 4 K_4 K4
关于复合运算 ∘ \circ ∘构成群,这就是一个置换群的例子(同时也是变换群)
∘ \circ ∘ | e | a | b | r |
---|---|---|---|---|
e | e | a | b | r |
a | a | e | r | b |
b | b | r | e | a |
r | r | b | a | e |
定义13.5(变换群)
所谓的变换,即非空集合S到S的一个映射,当这个映射又是一一对应时,称它为一一变换。我们以
S
S
S^S
SS表示S上映射的全体,T(S)表示所有S上一一变换组成的集合,即
S
S
=
{
f
∣
f
:
S
→
S
}
T
(
S
)
=
{
f
∣
f
∈
S
S
且为一一对应
}
S^S=\{f|f:S\to S\}\\ T(S)=\{f|f\in S^S且为一一对应\}
SS={f∣f:S→S}T(S)={f∣f∈SS且为一一对应}
设
G
⊆
T
(
S
)
G\subseteq T(S)
G⊆T(S),当
[
G
;
∘
]
[G;\circ]
[G;∘]为群时,称其为变换群;其中
∘
\circ
∘为一一变换的复合运算,并称为变换的乘法
定理13.9 [ T ( S ) ; ⋅ ] [T(S);\cdot] [T(S);⋅]是一个变换群
定义13.6(置换群)
当S不为空,且为有限集,S上的一一变换就被称为置换。当S上的某些置换关于乘法运算构成群时,称为置换群
所有置换群同时为变换群
定义(n次对称群)
若 ∣ S ∣ = n |S|=n ∣S∣=n,设 S = { 1 , 2 , … , n } S=\{1,2,\dots,n\} S={1,2,…,n},其置换的全体组成的集合一般记为 S n S_n Sn,类似定理13.9知其是一个置换群,称为n次对称群
S上的置换群
σ
∈
S
n
\sigma\in S_n
σ∈Sn,习惯写成
σ
=
(
1
2
…
n
σ
(
1
)
σ
(
2
)
…
σ
(
n
)
)
\sigma=\left(\begin{matrix}1&2&\dots&n\\\sigma(1)&\sigma(2)&\dots&\sigma(n)\end{matrix}\right)
σ=(1σ(1)2σ(2)……nσ(n))
或
σ
=
(
i
1
i
2
…
i
n
σ
(
i
1
)
σ
(
i
2
)
…
σ
(
i
n
)
)
\sigma=\left(\begin{matrix}i_1&i_2&\dots&i_n\\\sigma(i_1)&\sigma(i_2)&\dots&\sigma(i_n)\end{matrix}\right)
σ=(i1σ(i1)i2σ(i2)……inσ(in))
表示置换
σ
\sigma
σ之下i的象为
σ
(
i
)
∈
S
\sigma(i)\in S
σ(i)∈S。容易证明恒等置换e是
σ
=
(
1
2
…
n
1
2
…
n
)
\sigma=\left(\begin{matrix}1&2&\dots&n\\1&2&\dots&n\end{matrix}\right)
σ=(1122……nn)
置换
σ
\sigma
σ的逆置换的形式也容易表示,这里不再赘述
例13.9
写出三次对称群
S
3
S_3
S3
解:设S={1,2,3},于是 ∣ S 3 ∣ = 3 ! = 6 |S_3|=3! =6 ∣S3∣=3!=6,这6个置换分别是
e = ( 1 2 3 1 2 3 ) , σ 1 = ( 1 2 3 1 3 2 ) , σ 2 = ( 1 2 3 2 1 3 ) σ 3 = ( 1 2 3 3 2 1 ) , σ 4 = ( 3 1 2 1 3 2 ) , σ 5 = ( 1 2 3 2 3 1 ) e=\left(\begin{matrix}1&2&3\\1&2&3\end{matrix}\right),\sigma_1=\left(\begin{matrix}1&2&3\\1&3&2\end{matrix}\right),\sigma_2=\left(\begin{matrix}1&2&3\\2&1&3\end{matrix}\right)\\ \sigma_3=\left(\begin{matrix}1&2&3\\3&2&1\end{matrix}\right),\sigma_4=\left(\begin{matrix}3&1&2\\1&3&2\end{matrix}\right),\sigma_5=\left(\begin{matrix}1&2&3\\2&3&1\end{matrix}\right)\\ e=(112233),σ1=(112332),σ2=(122133)σ3=(132231),σ4=(311322),σ5=(122331)
其群运算可见下表
定义13.7(循环置换)
形如
σ
=
(
i
1
i
2
…
i
d
−
1
i
d
i
d
+
1
…
i
n
i
2
i
3
…
i
d
i
1
i
d
+
1
…
i
n
)
\sigma=\left(\begin{matrix}i_1&i_2&\dots&i_{d-1}&i_d&i_{d+1}&\dots&i_n\\i_2&i_3&\dots&i_d&i_1&i_{d+1}&\dots&i_n\end{matrix}\right)
σ=(i1i2i2i3……id−1ididi1id+1id+1……inin)
的置换称为循环置换,称其循环长度为d。特别当
d
=
2
d=2
d=2时称其为对换。
上述 σ \sigma σ由可写成 σ = ( i 1 ⋯ i d ) \sigma=(i_1~\dotsi~i_d) σ=(i1 ⋯ id)
例13.10
(
1
2
3
4
5
6
7
2
6
3
1
5
4
7
)
=
(
1
2
6
4
3
5
7
2
6
4
1
3
5
7
)
=
(
1
2
6
4
)
\begin{aligned} &\ \ \ \ \left(\begin{matrix}1&2&3&4&5&6&7\\2&6&3&1&5&4&7\end{matrix}\right)\\ &=\left(\begin{matrix}1&2&6&4&3&5&7\\2&6&4&1&3&5&7\end{matrix}\right)\\ &=\left(\begin{matrix}1&2&6&4\end{matrix}\right) \end{aligned}
(12263341556477)=(12266441335577)=(1264)
是一个长度为4的循环置换
定理13.10 S n S_n Sn中的任意一个置换均可分解为不含公共元的若干循环置换的乘积
证明:对n作归纳证明
归纳基础:n=1时,结论显然成立
归纳假设:当 ∣ S ∣ ≤ n − 1 |S|\le n-1 ∣S∣≤n−1时,结论成立
归纳步骤:当 ∣ S ∣ = n |S|=n ∣S∣=n时,任取 S n S_n Sn中的置换 σ \sigma σ
从元素1出发取 σ \sigma σ上的一个循环置换,设为 ( 1 , j 1 , j 2 , ⋯ , j k − 1 ) (1,j_1,j_2,\dotsi,j_{k-1}) (1,j1,j2,⋯,jk−1),于是
σ = ( 1 , j 1 , j 2 , ⋯ , j k − 1 ) ⋅ ( 1 j 1 ⋯ j k − 1 j k ⋯ j n − 1 1 j 1 ⋯ j k − 1 σ ( j k ) ⋯ σ ( j n − 1 ) ) \sigma=(1,j_1,j_2,\dotsi,j_{k-1})\cdot\left(\begin{matrix}1&j_1&\dotsi&j_{k-1}&j_k&\dotsi&j_{n-1}\\1&j_1&\dotsi&j_{k-1}&\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right) σ=(1,j1,j2,⋯,jk−1)⋅(11j1j1⋯⋯jk−1jk−1jkσ(jk)⋯⋯jn−1σ(jn−1))
分析
σ = ( 1 j 1 ⋯ j k − 1 j k ⋯ j n − 1 1 j 1 ⋯ j k − 1 σ ( j k ) ⋯ σ ( j n − 1 ) ) = ( j k ⋯ j n − 1 σ ( j k ) ⋯ σ ( j n − 1 ) ) \sigma=\left(\begin{matrix}1&j_1&\dotsi&j_{k-1}&j_k&\dotsi&j_{n-1}\\1&j_1&\dotsi&j_{k-1}&\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right)=\left(\begin{matrix}j_k&\dotsi&j_{n-1}\\\sigma(j_k)&\dotsi&\sigma(j_{n-1})\end{matrix}\right) σ=(11j1j1⋯⋯jk−1jk−1jkσ(jk)⋯⋯jn−1σ(jn−1))=(jkσ(jk)⋯⋯jn−1σ(jn−1))
可以看作n-k个元素的置换,按归纳假设可以分解成若干不含公共元的循环置换
推论13.1 任意一个置换可以分解为若干对换的乘积
证明任意循环置换可分解为对换的乘积,再由定理13.10得证
( i 1 i 2 … i d ) = ( i 1 i 2 ) ( i 1 2 i 3 ) ⋯ ( i d − 1 i d ) (i_1~\ i_2~\ \dots\ \ i_d)=(i_1\ \ i_2)(i_12 \ i_3)\dotsi(i_{d-1}\ \ i_d) (i1 i2 … id)=(i1 i2)(i12 i3)⋯(id−1 id)
例13.11
把置换写成循环置换的积和对换的积
σ = ( 1 2 3 4 5 6 4 3 1 2 6 5 ) = ( 1 4 2 3 ) ( 5 6 ) = ( 1 4 ) ( 4 2 ) ( 2 3 ) ( 5 6 ) \begin{aligned} \sigma&=\left(\begin{matrix}1&2&3&4&5&6\\4&3&1&2&6&5\end{matrix}\right)\\ &=(1~~~4~~~2~~~3)(5~~~6)\\ &=(1~~~4)(4~~~2)(2~~~3)(5~~~6) \end{aligned} σ=(142331425665)=(1 4 2 3)(5 6)=(1 4)(4 2)(2 3)(5 6)
从例13.11中可以看出(1)被分解为偶数个对换的乘积,(2)被分解为奇数个对换的乘积,并且在(2)中写出了两种不同的对换乘积,它们的奇偶性相同。由此导出定义和定理。
定理13.11 任意一个置换可被分解为对换的乘积,这种分解不是唯一的,但对换数量的奇偶性唯一
定义13.8(奇\偶置换)
在置换的对换分解式中,对换因子的个数是偶数时称为偶置换,否则称奇置换。
推论13.2 一个长度为k的循环置换,当k为奇数时,它是一个偶置换;当k为偶数时,它是一个奇置换。
推论13.3 每个偶置换均可被分解为若干长度为3的循环置换的乘积,循环置换中可含公共元
证明:
( a b ) ( c d ) = ( a b ) ( b c ) ( b c ) ( c d ) = ( b c a ) ( c d b ) \begin{aligned}&~~~~(a~~~b)(c~~~d)\\ &=(a~~~b)(b~~~c)(b~~~c)(c~~~d)\\ &=(b~~~c~~~a)(c~~~d~~~b)\end{aligned} (a b)(c d)=(a b)(b c)(b c)(c d)=(b c a)(c d b)
注意:(b c a)和(a b c)实际上等价
推论13.4 S n S_n Sn中的奇、偶置换在置换的乘法运算下,其奇偶性由下表给出
⋅ \cdot ⋅ | 偶置换 | 奇置换 |
---|---|---|
偶置换 | 奇置换 | 奇置换 |
奇置换 | 奇置换 | 偶置换 |
且奇置换的逆是奇置换,偶置换的逆是偶置换;奇置换相乘是偶置换,所以奇置换全体不构成代数系统
由于恒等置换是0个对换的乘积,我们视它为偶置换
定义13.9(n次交待群)
推论13.5 对称群 S n S_n Sn中所有的偶值换组成的集合,记为 A n A_n An,关于置换的乘法构成群
记为 [ A n ; ⋅ ] [A_n;\cdot] [An;⋅],称n次交待群
由推论13.4以及置换群满足消去律知: S n S_n Sn中奇、偶置换各占一半。所以 A n A_n An的阶为 ⌈ n ! / 2 ⌉ \lceil n!/2\rceil ⌈n!/2⌉
例13.12
根据例13.9给出的
[
S
3
;
⋅
]
[S_3;\cdot]
[S3;⋅],它的三次交待群是
A 3 = { ( 1 ) , ( 1 2 3 ) , ( 3 2 1 ) } A_3=\{(1),(1~~2~~3),(3~~2~~1)\} A3={(1),(1 2 3),(3 2 1)}
其中 ( 1 ) (1) (1)表示恒等置换
例13.13
设群
G
=
{
g
1
,
⋯
g
n
}
G=\{g_1,\dotsi g_n\}
G={g1,⋯gn},映射
σ
g
:
G
→
G
,
σ
g
(
g
′
)
=
g
g
′
\sigma_g:G\to G,\sigma_g(g')=gg'
σg:G→G,σg(g′)=gg′,则
Σ
=
{
σ
g
∣
g
∈
G
}
\Sigma=\{\sigma_g|g\in G\}
Σ={σg∣g∈G}
关于映射的乘法构成置换群
先分析 Σ \Sigma Σ中映射的本质,用置换的表示法即为
σ g i = ( g 1 ⋯ g j ⋯ g n g i g 1 ⋯ g i g j ⋯ g i g n ) \sigma_{g_i}=\left(\begin{matrix}g_1&\dotsi&g_j&\dotsi&g_n\\g_ig_1&\dotsi&g_ig_j&\dotsi&g_ig_n\end{matrix}\right) σgi=(g1gig1⋯⋯gjgigj⋯⋯gngign)
由此可知 Σ \Sigma Σ的确为置换的集合再证明 [ Σ ; ⋅ ] [\Sigma;\cdot] [Σ;⋅]为群
- σ g σ g ′ ( x ) = g g ′ x = σ g g ′ ( x ) \sigma_g\sigma_{g'}(x)=gg'x=\sigma_{gg'}(x) σgσg′(x)=gg′x=σgg′(x),满足封闭性
- σ e \sigma_e σe是恒等置换,为单位元
- σ g − 1 \sigma_{g^{-1}} σg−1为逆元
- 由1.置换的乘法转化为群的乘法,是可结合的
定义13.10(元素的阶)
使 a n = e a^n=e an=e的最小正整数,如果a的任意两个幂不相等,则a的阶是无限的
定理13.12* G为群, a ∈ G a\in G a∈G且阶为n,有 a m = e a^m=e am=e当且仅当 n ∣ m n|m n∣m
定义13.11(循环群)
群G中若有生成元 a a a,对任意 g ∈ G g\in G g∈G有 g = a k , k ∈ Z g=a^k,k\in Z g=ak,k∈Z,则称G由 a a a生成,是循环群,记为 G ( a ) G(a) G(a)
当G的阶有限时称为有限循环群,否则称无限循环群
由定义可以知道,当G为n阶循环群时
G = { a 0 = e , a 1 , a 2 , ⋯ , a n − 1 } G=\{a^0=e,a^1,a^2,\dotsi,a^{n-1}\} G={a0=e,a1,a2,⋯,an−1}
当G为无限循环群时
G = { ⋯ , a − 1 , a 0 = e , a 1 , a 2 , ⋯ } G=\{\dotsi,a^{-1},a^0=e,a^1,a^2,\dotsi\} G={⋯,a−1,a0=e,a1,a2,⋯}
定理 设有限群G的阶为n,若存在 g ∈ G g\in G g∈G且 g g g的阶也为n,则G可以由 g g g生成
例13.14
证明
[
Z
;
+
]
[Z;+]
[Z;+]与
[
Z
n
;
⊕
]
[Z_n;\oplus]
[Zn;⊕]都是循环群,并讨论生成元的阶
(1)对任意 k ∈ Z , k ⋅ 1 = k k\in Z,k\cdot 1=k k∈Z,k⋅1=k,所以1是Z的一个生成元,同理-1也是。 ± 1 \pm 1 ±1的阶均为无限的
(2)对任意 [ k ] ∈ Z n [k]\in Z_n [k]∈Zn, [ k ] = k [ 1 ] [k]=k[1] [k]=k[1],所以 Z n = ( [ 1 ] ) Z_n=([1]) Zn=([1]),[1]是n阶的
循环群最为一目了然,因为从同构的意义上说,循环群只有两个
定理13.13 G为循环群, a a a为其一生成元,则G的结构完全由元素 a a a的阶来决定
(1) 当a为无限阶时,G同构于 [ Z ; + ] [Z;+] [Z;+]
(2) 当a的阶为n时,G同构于同余类加法循环群 [ Z n ; ⊕ ] [Z_n;\oplus] [Zn;⊕]
证明:
映射 ϕ ( a k ) = k \phi(a^k)=k ϕ(ak)=k,证明是一一对应和同态映射
例13.15
证明群G同构于
[
Z
5
;
⊕
]
[Z_5;\oplus]
[Z5;⊕]
即证明G为五阶循环群,由定理13.13知 G ≅ Z 5 G\cong Z_5 G≅Z5
第13章习题二
习题13.12
将下述置换分解为不含公共元的循环置换,再进一步分解为对换的乘积
( 1 ) ( 1 2 3 4 5 6 1 3 2 6 4 5 ) (1)\left(\begin{matrix}1&2&3&4&5&6\\1&3&2&6&4&5\end{matrix}\right) (1)(112332465465)
( 2 ) ( 3 7 6 5 2 1 4 7 6 5 4 3 2 1 ) (2)\left(\begin{matrix}3&7&6&5&2&1&4\\7&6&5&4&3&2&1\end{matrix}\right) (2)(37766554231241)
( 3 ) ( a b c d e f f a e d c b ) (3)\left(\begin{matrix}a&b&c&d&e&f\\f&a&e&d&c&b\end{matrix}\right) (3)(afbaceddecfb)
( 1 ) ( 1 2 3 4 5 6 1 3 2 6 4 5 ) = ( 2 3 4 6 5 1 3 2 6 5 4 1 ) = ( 2 3 ) ( 4 6 5 ) = ( 2 3 ) ( 4 6 ) ( 6 5 ) ( 2 ) ( 3 7 6 5 2 1 4 7 6 5 4 3 2 1 ) = ( 3 7 6 5 4 1 2 7 6 5 4 1 2 3 ) = ( 3 7 6 5 4 1 2 ) = 略 ( 3 ) ( a b c d e f f a e d c b ) = ( a f b c e d f b a e c d ) = ( a f b ) ( c e ) = ( a f ) ( f b ) ( c e ) \begin{aligned} &(1)\left(\begin{matrix}1&2&3&4&5&6\\1&3&2&6&4&5\end{matrix}\right)=\left(\begin{matrix}2&3&4&6&5&1\\3&2&6&5&4&1\end{matrix}\right) =\left(\begin{matrix}2&3\end{matrix}\right)\left(\begin{matrix}4&6&5\end{matrix}\right)=(2~~~3)(4~~~6)(6~~~5)\\ &(2)\left(\begin{matrix}3&7&6&5&2&1&4\\7&6&5&4&3&2&1\end{matrix}\right)=\left(\begin{matrix}3&7&6&5&4&1&2\\7&6&5&4&1&2&3\end{matrix}\right)=(3~~~7~~~6~~~5~~~4~~~1~~~2)=略\\ &(3)\left(\begin{matrix}a&b&c&d&e&f\\f&a&e&d&c&b\end{matrix}\right)=\left(\begin{matrix}a&f&b&c&e&d\\f&b&a&e&c&d\end{matrix}\right)=(a~~~f~~~b)(c~~~e)=(a~~~f)(f~~~b)(c~~~e) \end{aligned} (1)(112332465465)=(233246655411)=(23)(465)=(2 3)(4 6)(6 5)(2)(37766554231241)=(37766554411223)=(3 7 6 5 4 1 2)=略(3)(afbaceddecfb)=(affbbaceecdd)=(a f b)(c e)=(a f)(f b)(c e)
习题13.13
已知置换:
δ
=
(
1
2
⋯
n
)
,
S
=
(
1
2
3
)
(
4
5
)
,
T
=
(
1
4
)
(
3
2
)
(
1
6
)
\delta=(1~~2~~\dotsi~~n),S=(1~~2~~3)(4~~5),T=(1~~4)(3~~2)(1~~6)
δ=(1 2 ⋯ n),S=(1 2 3)(4 5),T=(1 4)(3 2)(1 6),求:
(1) δ − 1 \delta^{-1} δ−1,(2) S 2 ⋅ T S^2\cdot T S2⋅T,(3) ( S ⋅ T ) − 1 (S\cdot T)^{-1} (S⋅T)−1
(1) δ − 1 = ( 2 3 ⋯ n 1 1 2 ⋯ n − 1 n ) \delta^{-1}=\left(\begin{matrix}2&3&\dotsi&n&1\\1&2&\dotsi&n-1&n\end{matrix}\right) δ−1=(2132⋯⋯nn−11n)
(2)
S 2 = ( 1 2 3 ) ( 4 5 ) ( 1 2 3 ) ( 4 5 ) = ( 1 3 2 ) S 2 ⋅ T = ( 1 3 2 ) ( 1 4 ) ( 3 2 ) ( 1 6 ) = ( 1 3 ) ( 1 4 ) ( 1 6 ) = ( 1 4 3 ) ( 1 6 ) = ( 4 3 1 6 ) \begin{aligned} &S^2=(1~~2~~3)(4~~5)(1~~2~~3)(4~~5)=(1~~3~~2)\\ &S^2\cdot T=(1~~3~~2)(1~~4)(3~~2)(1~~6)=(1~~3)(1~~4)(1~~6)=(1~~4~~3)(1~~6)=(4~~3~~1~~6) \end{aligned} S2=(1 2 3)(4 5)(1 2 3)(4 5)=(1 3 2)S2⋅T=(1 3 2)(1 4)(3 2)(1 6)=(1 3)(1 4)(1 6)=(1 4 3)(1 6)=(4 3 1 6)
(3)
S ⋅ T = ( 1 6 5 4 2 ) ( S ⋅ T ) − 1 = ( 1 2 4 5 6 ) S\cdot T=(1~~6~~5~~4~~2)\\ (S\cdot T)^{-1}=(1~~2~~4~~5~~6) S⋅T=(1 6 5 4 2)(S⋅T)−1=(1 2 4 5 6)
规律:置换群的逆就是反过来读
习题13.20*
G为群,
a
,
b
∈
G
a,b\in G
a,b∈G,已知ab=ba,a的阶为n,b的阶为m,证明:
(1) ( n , m ) = 1 (n,m)=1 (n,m)=1时,ab的阶为nm
(2) ( n , m ) ≠ 1 , 且 ( a ) ∩ ( b ) = { e } (n,m)\neq1,且(a)\cap(b)=\{e\} (n,m)=1,且(a)∩(b)={e}时,ab的阶为n,m之最小公倍数LCM(n,m)。
(1)
必要性显然
充分性:
设ab的阶为p
由于 ( a b ) p = e → a p = ( b p ) − 1 (ab)^p=e\to a^p=(b^p)^{-1} (ab)p=e→ap=(bp)−1, a p m = ( b p ) − m = e a^{pm}=(b^p)^{-m}=e apm=(bp)−m=e
所以n|pm,又(n,m)=1,所以 n ∣ p n|p n∣p,同理 m ∣ p m|p m∣p,得证
(2)
充分性:
由 ( a ) ∩ ( b ) = { e } (a)\cap(b)=\{e\} (a)∩(b)={e}得出 a i b j = e a^ib^j=e aibj=e当且仅当 a i = b j = e a^i=b^j=e ai=bj=e,
所以 n ∣ p , m ∣ p n|p,m|p n∣p,m∣p,也说明LCM(n,m)|p,得证
习题13.27
设
G
=
(
a
)
,
∣
G
∣
=
n
G=(a),|G|=n
G=(a),∣G∣=n,证明
(1)它的任意子群是循环群
(2)它的任意元的阶可以整除n
(3)设d为n的因子,则G必存在唯一一个阶为d的子群
(1)
(e)是循环群
假设任意子群中次数最小的元素 a ∗ = a m a^*=a^m a∗=am
若子群中存在次数不被m互素的元 a n a^n an,则要么n<m,要么n与m的差小与m,矛盾
以任意子群可由其中次数最小的元素生成
(2)
假设x的阶为p, x = a m x=a^m x=am, x n = ( a m ) n = ( a n ) m = e x^n=(a^m)^n=(a^n)^m=e xn=(am)n=(an)m=e,由定理13.12,则 p ∣ n p|n p∣n
(3)
存在性:设n=d*b,存在子群 H = { a b , a 2 b , ⋯ , a d b = e } H=\{a^b,a^{2b},\dotsi,a^{db}=e\} H={ab,a2b,⋯,adb=e}
唯一性:假设 H ′ = ( a m ) H'=(a^m) H′=(am)同为阶为d的子群,则 a m d = e = ( a n ) k a^{md}=e=(a^{n})^k amd=e=(an)k,所以 ( n d = b ) ∣ m (\frac{n}{d}=b)|m (dn=b)∣m
所以 a m ∈ H a^m\in H am∈H,即 H ′ ∈ H H'\in H H′∈H
又 ∣ H ∣ = ∣ H ′ ∣ = d |H|=|H'|=d ∣H∣=∣H′∣=d,所以H=H’
习题13.28
设
G
=
(
a
)
,
b
=
a
k
,
∣
G
∣
=
n
G=(a),b=a^k,|G|=n
G=(a),b=ak,∣G∣=n,当b为G的生成元时k具有什么性质;当b为G的一个子群的生成元时k又具有什么性质?
(1)
当b是G的生成元时, b n = e = a m n b^n=e=a^{mn} bn=e=amn,且 a k i ≠ e = a m n a^{ki}\neq e=a^{mn} aki=e=amn,说明k与n无1外的公因数
或者:假设k与n有公因数d
( a k ) n d = ( a t ) n = e (a^k)^{\frac nd}=(a^t)^n=e (ak)dn=(at)n=e,则d只能为1
(2)
当b是G的一个子群的生成元时,阶为p,由拉格朗日定理,任意子群的阶整除n
( a k ) p = e = a m n (a^k)^p=e=a^{mn} (ak)p=e=amn,即 n ∣ k p n|kp n∣kp,又 n = p r n=pr n=pr,其中r是子群的指数,因此 r ∣ k r|k r∣k
定理:子群在G中的指数整除生成元的次数
补充1*
群G是阶偶数的有限群,则G中阶为2的元素个数一定是奇数
分类讨论
(1)阶为1的元素:e
(2)阶大于2的元素成对出现:
如果 a a a的阶大于2,那么 a − 1 ≠ a a^{-1}\neq a a−1=a,否则 a a − 1 = e aa^{-1}=e aa−1=e矛盾
且 a − 1 a^{-1} a−1的阶也大于2,因为 a − 1 = a p − 1 a^{-1}=a^{p-1} a−1=ap−1与p是互素的
(3)阶等于2的元素:奇数个