目录
第14章 环
14.1 环的定义与性质
定义 14.1(环)
代数系统 [ R ; + , ∗ ] [R;+,*] [R;+,∗]中,其中+,*为定义在R上的二元运算,满足要求的称环
- +可结合
- +可交换
- +有单位元(即环中一定有零元)
- 每个元有加法逆元
- *可结合
- + ∗ +* +∗满足分配律: a ∗ ( b + c ) = ( a ∗ b ) + ( a ∗ c ) a * (b+c)=(a * b)+(a * c) a∗(b+c)=(a∗b)+(a∗c), ( b + c ) ∗ a = ( b ∗ a ) + ( c ∗ a ) (b+c) * a=(b * a)+(c * a) (b+c)∗a=(b∗a)+(c∗a)
上述定义可简记为 [ R ; + ] [R;+] [R;+]为Able群; [ R ; ∗ ] [R;*] [R;∗]为半群,两个运算满足分配律
定义 14.2(有单位元环、交换环)
[ R ; + , ∗ ] [R;+,*] [R;+,∗]为环,当乘法有单位元称有单位元环,并把乘法的单位元叫做环的单位元
[ R ; + , ∗ ] [R;+,*] [R;+,∗]为环,当乘法是交换的,则称它为交换环
定理(环的性质)
定理 14.1(环中性质)
[ R ; + , ⋅ ] [R;+, \cdot] [R;+,⋅]为环,则任意 a , b ∈ R a,b \in R a,b∈R,有
(1) a ⋅ 0 = 0 ⋅ a = 0 a \cdot 0=0\cdot a=0 a⋅0=0⋅a=0
(2) a ⋅ ( − b ) = ( − a ) ⋅ b = − ( a b ) a\cdot (-b)=(-a)\cdot b=-(ab) a⋅(−b)=(−a)⋅b=−(ab)
证明: 由分配律
(1) a ⋅ 0 = a ⋅ ( 0 + 0 ) = a ⋅ 0 + a ⋅ 0 a\cdot 0=a\cdot (0+0)=a\cdot 0+a\cdot 0 a⋅0=a⋅(0+0)=a⋅0+a⋅0
即加法单位元是环的零元,环必有零元
(2) a ⋅ ( − b ) + a ⋅ b = a ⋅ ( − b + b ) = 0 ∴ a ⋅ ( − b ) = − ( a ⋅ b ) a\cdot(-b)+a\cdot b=a\cdot(-b+b)=0 \therefore a\cdot(-b)=-(a\cdot b) a⋅(−b)+a⋅b=a⋅(−b+b)=0∴a⋅(−b)=−(a⋅b)
定义 14.3(零因子)
[ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅] 为环, a , b ∈ R , a ≠ 0 , b ≠ 0 a,b\in R,a\not=0,b\not=0 a,b∈R,a=0,b=0,但 a ⋅ b = 0 a\cdot b=0 a⋅b=0,称 a a a为 R R R的左零因子, b b b为 R R R的右零因子,统称零因子
定义 14.4(整环)
-
[ R ; + , ⋅ ] [R;+,\cdot ] [R;+,⋅]为有单位元环
-
· 满足交换律
-
R中无零因子,即如果 a ⋅ b = 0 , a\cdot b=0, a⋅b=0,则 a = 0 a=0 a=0或 b = 0 b=0 b=0
此时称R为整环
定理 14.2: [ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅]为整环,则其乘法满足消去律
证明:
设有 a ≠ 0 a\not=0 a=0且 a b = a c ab=ac ab=ac,则 a ( b − c ) = a b − a c = 0 a(b-c)=ab-ac=0 a(b−c)=ab−ac=0
由于整环中无零因子,故有 ( b − c ) = 0 (b-c)=0 (b−c)=0,满足消去律
定义 14.5 (除环)
环 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅], ∣ R ∣ ≥ 2 |R|\ge2 ∣R∣≥2
-
有单位元
-
非零元有逆元
反证法:若除环中有零因子
ab=0且a,b均不为0,左乘 a − 1 a^{-1} a−1得 b = 0 b=0 b=0,矛盾
称它为除环
如果一个除环又是可交换的,称它为域
容易验证Q,C,R都是域,分别称为有理数域、实数域和复数域
小结
第14章习题一
习题14.2
下述系统是环吗
(1) n阶方阵关于矩阵的加法和乘法
(2) 区间[-1,1]上所有实连续函数,关于函数的加法和乘法
(3) [ Z ; + , ⋅ ] [Z;+,\cdot] [Z;+,⋅]其中加为整数加法,乘定义为 a ⋅ b = 0 a\cdot b=0 a⋅b=0
(4) R上所有连续函数的全体,关于函数加法和函数复合
(5) [ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅],+为实数加法,乘定义为 a ⋅ b = ∣ a ∣ b a\cdot b=|a|b a⋅b=∣a∣b
(1)
关于矩阵加法是交换群,关于矩阵乘法有结合律是半群,满足分配律,是环
(2)
f(x)=0是单位元,逆元-f(x),函数加法可交换可结合
函数乘法可结合,关于函数加法可分配,f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)
(3)
整数加法满足是交换群
乘法满足结合律,是半群
a ( b + c ) = a b + a c = 0 a(b+c)=ab+ac=0 a(b+c)=ab+ac=0
(4)
不满足分配律
反例: f ( x ) = x 2 , g ( x ) = h ( x ) = 2 x , f ( g ( x ) + h ( x ) ) = 16 x 2 ≠ 8 x 2 f(x)=x^2,g(x)=h(x)=2x,f(g(x)+h(x))=16x^2\neq8x^2 f(x)=x2,g(x)=h(x)=2x,f(g(x)+h(x))=16x2=8x2
(5)
不满足左侧分配律, ( b + c ) a = ∣ b + c ∣ a ≠ ∣ b ∣ a + ∣ c ∣ a (b+c)a=|b+c|a\neq|b|a+|c|a (b+c)a=∣b+c∣a=∣b∣a+∣c∣a
习题14.3
下面系统中哪些是整环、除环、域
(1) [ { a + b i ∣ a , b ∈ Q } ; + , ⋅ ] [\{a+bi|a,b\in Q\};+,\cdot] [{a+bi∣a,b∈Q};+,⋅]
(2) [ Z 2 × Z 2 ; + , ⋅ ] [Z_2\times Z_2;+,\cdot] [Z2×Z2;+,⋅],其中加乘定义为对个分量运算
(3) [ Z × R ; + , ⋅ ] [Z\times R;+,\cdot] [Z×R;+,⋅],其中加乘都是对分量分别运算
(4) [ { a + b i ∣ a , b ∈ Z } ; + , ⋅ ] [\{a+bi|a,b\in Z\};+,\cdot] [{a+bi∣a,b∈Z};+,⋅]
(5) [ F [ x ] ; + , ⋅ ] [F[x];+,\cdot] [F[x];+,⋅],为多项式环
(1)域
关于加法满足交换群,关于乘法满足结合律,加乘满足分配律,乘法满足交换律
满足非零元有逆, ( a a 2 + b 2 − b a 2 + b 2 i ) (\frac a{a^2+b^2}-\frac b{a^2+b^2}i) (a2+b2a−a2+b2bi)
(2)非整环除环域
加法满足交换群性质,乘法满足结合律,加乘可分配
有零因子 [ 0 0 1 1 ] × [ 1 1 0 0 ] \left[\begin{matrix}0&0\\1&1\end{matrix}\right]\times\left[\begin{matrix}1&1\\0&0\end{matrix}\right] [0101]×[1010]
(3)非整环除环域
加乘均满足交换群的性质,满足分配律
有零因子(0,1)·(1,0)=(0,0)
有单位元(1,1),对左侧的整数集不满足非0元有逆
(4)整环
不满足非零元有逆,但满足无零因子(c,d=0)
(5)整环扩张到多项式环
加满足交换群,加乘满足分配律,乘法交换性与F一致
当F无零因子,多项式环是无零因子的
存在单位元是1,不满足非零元有逆(最高项无法消除)
当F是整环,则是整环;当F是域,则是域
习题14.4
在环中找出零因子
(1) [ Z 6 ; ⊕ , ⊗ ] [Z_6;\oplus,\otimes] [Z6;⊕,⊗]
(2) [ Z 2 × Z 2 ; + , ⋅ ] [Z_2\times Z_2;+,\cdot] [Z2×Z2;+,⋅]
(3) [ M 2 , 2 ( Z 3 ) ; + , ⋅ ] [M_{2,2}(Z_3);+,\cdot] [M2,2(Z3);+,⋅]
(1)
[ 2 ] ⊗ [ 3 ] = [ 0 ] [2]\otimes [3]=[0] [2]⊗[3]=[0]
[ 3 ] ⊗ [ 4 ] = [ 0 ] [3]\otimes[4]=[0] [3]⊗[4]=[0]
(2)
(1,0)(0,1)=(0,0)
(3)
![]()
习题14.7
证明环的直积也是环
加法满足交换群,乘法满足半群,加乘满足分配律
14.2 子环和环同态
定义 14.6(子环)
[ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅]为环, S ⊆ R , S ≠ ∅ S\subseteq R,S\neq\varnothing S⊆R,S=∅,当 [ S ; + , ⋅ ] [S;+,\cdot] [S;+,⋅]是环时,称它为 R R R的子环
特别地,在 S = R S=R S=R或 S = { 0 } S=\{0\} S={0}时称它为 R R R的平凡子环,当S时R的真子集时称S为R的真子环
定理 14.3(子环的等价定义)
R为环, S ≠ ∅ , S ⊆ R S\neq\varnothing ,S\subseteq R S=∅,S⊆R,S是R的子环,当且仅当 ∀ a , b ∈ S \forall a,b\in S ∀a,b∈S
- a + b ∈ S a+b\in S a+b∈S
- − a ∈ S -a\in S −a∈S
- a ⋅ b ∈ S a\cdot b \in S a⋅b∈S
证明:
必要性:显然成立
充分性:
- 由1.2.分别满足
1.封闭性
和2.有逆元
的条件,所以S是R的子群,即Abel群- 由3.知S关于乘法"·"封闭,则S为半群
- S ⊆ R S\subseteq R S⊆R,乘法关于加法同样满足分配律
定义 14.7(环的中心)
环的中心是指所有与
R
R
R 中的任意元在乘法下可交换的那些元素全体,即
C
=
{
x
∣
x
∈
R
,
∀
a
∈
R
,
a
x
=
x
a
}
C=\{x|x\in R,\forall a\in R,ax=xa\}
C={x∣x∈R,∀a∈R,ax=xa}
定理 14.4:环的中心 C C C是它的子环
证明:由定理14.3
任取 x , y ∈ C x,y\in C x,y∈C,有
a ( x + y ) = a x + a y = x a + y a = ( x + y ) a a(x+y)=ax+ay=xa+ya=(x+y)a a(x+y)=ax+ay=xa+ya=(x+y)a
∴ x + y ∈ C \therefore x+y\in C ∴x+y∈C
a ( − x ) = − a x = − ( x a ) = ( − x ) a (定理 14.1 ) a(-x)=-ax=-(xa)=(-x)a(定理\ \ 14.1) a(−x)=−ax=−(xa)=(−x)a(定理 14.1)
∴ − x ∈ C \therefore-x\in C ∴−x∈C
a ( x y ) = ( a x ) y = ( x a ) y = x ( a y ) = ( x y ) a a(xy)=(ax)y=(xa)y=x(ay)=(xy)a a(xy)=(ax)y=(xa)y=x(ay)=(xy)a
∴ x y ∈ C \therefore xy\in C ∴xy∈C
例 14.7 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅]是由单位元环,e为其单位元,作R的子集合 E = { n e ∣ n ∈ Z } E=\{ne|n\in Z\} E={ne∣n∈Z},证明E为R的一个子环
证明:
- 首先证明 [ E ; + ] [E;+] [E;+]是循环群, E = ( e ) E=(e) E=(e)。由条件知 k e , h e ∈ E ke,he\in E ke,he∈E, k e + h e = ( k + h ) e ∈ E ke+he=(k+h)e\in E ke+he=(k+h)e∈E,且 k e ∈ E ke\in E ke∈E时 − k e ∈ E -ke\in E −ke∈E,所以 [ E ; + ] [E;+] [E;+]是 [ R ; + ] [R;+] [R;+]的子群(封闭性和有逆元);<?>且E是e生成的,所以为循环子群
- 分类讨论 k e ⋅ h e ke\cdot he ke⋅he
- k , h > 0 , k e ⋅ h e = k h ⋅ e ⋅ e = ( k h ) e ∈ E ⊆ R k,h>0,ke\cdot he=kh\cdot e\cdot e=(kh)e\in E\subseteq R k,h>0,ke⋅he=kh⋅e⋅e=(kh)e∈E⊆R
- k > 0 , h < 0 , ( k e ) ( h e ) = ( k e ) ( ∣ h ∣ ( − e ) ) = k ∣ h ∣ ( − e ) = ( k h ) e ∈ E k>0,h<0,(ke)(he)=(ke)(|h|(-e))=k|h|(-e)=(kh)e\in E k>0,h<0,(ke)(he)=(ke)(∣h∣(−e))=k∣h∣(−e)=(kh)e∈E
- k < 0 , h > 0 k<0,h>0 k<0,h>0,类似2.
- k = 0 , h = 0 , ( k e ) ( h e ) = 0 ∈ E k=0,h=0,(ke)(he)=0\in E k=0,h=0,(ke)(he)=0∈E,
综上,E是R的子环
定义14.8(环的特征数)
R为有单位元环,e为其单位元,则 E = { n e ∣ n ∈ Z } E=\{ne|n\in Z\} E={ne∣n∈Z}为R的单位子环。
当 ∣ E ∣ < + ∞ |E|<+\infin ∣E∣<+∞,必有 m , n ∈ Z , m ≠ n , s t . m e = n e , ( m − n ) e = 0 m,n\in Z,m\neq n,st.me=ne,(m-n)e=0 m,n∈Z,m=n,st.me=ne,(m−n)e=0(否则E是无限集)
使
k
e
=
0
ke=0
ke=0 最小的正整数称为环R的特征数,以char R
表示R的特征数
环的特征数是元素的阶
定理 14.5(特征数的性质)
设p为有单位元环R的特征数,则
- 对任何 a ≠ 0 , p a = 0 a\neq0\ ,\ pa=0 a=0 , pa=0;而且,当R是整环时,p也是使 p a = 0 pa=0 pa=0对任何 a ≠ 0 a\neq0 a=0都成立的最小非0正整数
- 当R为整环时,其特征数不是素数就是0
证明:
- p a = p ( e a ) = ( p e ) a = 0 ⋅ a = 0 pa=p(ea)=(pe)a=0\cdot a=0 pa=p(ea)=(pe)a=0⋅a=0
- 反证,若R的特征数为合数 p = p 1 p 2 , p 1 ≠ 1 且 p 2 ≠ 1 p=p_1p_2,p_1\neq1且p_2\neq1 p=p1p2,p1=1且p2=1,则由1.
p a = ( p 1 p 2 ) a = ( p 1 a ) ( p 2 e ) = 0 pa=(p_1p_2)a=(p_1a)(p_2e)=0 pa=(p1p2)a=(p1a)(p2e)=0
因为R是整环,无零因子,由上式 p 1 a = 0 或 p 2 e = 0 p_1a=0或p_2e=0 p1a=0或p2e=0,与p为特征数矛盾
所以整环的特征数不是素数就是0
定义 14.9(环同态)
已知环
[
R
;
+
,
⋅
]
[R;+,\cdot]
[R;+,⋅]和环
[
R
′
;
∘
,
∗
]
[R';\circ,*]
[R′;∘,∗],若存在映射
ϕ
:
R
→
R
′
\phi:R\rightarrow R'
ϕ:R→R′,对任意
r
1
,
r
2
∈
R
有
r_1,r_2\in R有
r1,r2∈R有
{
ϕ
(
r
1
+
r
2
)
=
ϕ
(
r
1
)
∘
ϕ
(
r
2
)
ϕ
(
r
1
r
2
)
=
ϕ
(
r
1
)
∗
ϕ
(
r
2
)
\begin{cases} \phi(r_1+r_2)=\phi(r_1)\circ\phi(r_2)\\ \phi(r_1r_2)=\phi(r_1)*\phi(r_2) \end{cases}
{ϕ(r1+r2)=ϕ(r1)∘ϕ(r2)ϕ(r1r2)=ϕ(r1)∗ϕ(r2)
则称
ϕ
\phi
ϕ为R到R‘的同态映射;当满射称环同态;当
ϕ
\phi
ϕ为一一对应称环同构
当 R ′ ⊆ R R'\subseteq R R′⊆R时,称R到R‘的同态为自同态,同构为自同构
定理 14.6(关于同态映射 ϕ \phi ϕ)
设环 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,⋅]和环 [ R ′ ; ∘ , ∗ ] [R';\circ,*] [R′;∘,∗]有同态映射 ϕ \phi ϕ,则 ϕ ( R ) ≠ ∅ \phi(R)\neq\varnothing ϕ(R)=∅
- ϕ ( 0 ) = 0 ′ \phi(0)=0' ϕ(0)=0′,0为R加法之单位元,0’为R‘加法之单位元
- 如果R和R‘均为有单位元环,当 ϕ \phi ϕ是满射或 R‘为无零因子环且 ϕ \phi ϕ不是零同态(所有元素映射到零元),则 ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e′
- ϕ ( R ) ⊆ R ′ \phi(R)\subseteq R' ϕ(R)⊆R′必为R‘的子环
证明留作习题:
- ϕ ( 0 + 0 ) = ϕ ( 0 ) ∘ ϕ ( 0 ) , ∴ ϕ ( 0 ) = 0 ′ \phi(0+0)=\phi(0)\circ\phi(0),\ \therefore\phi(0)=0' ϕ(0+0)=ϕ(0)∘ϕ(0), ∴ϕ(0)=0′
- ϕ ( e ⋅ e ) = ϕ ( e ) ∗ ϕ ( e ) \phi(e\cdot e)=\phi(e)*\phi(e) ϕ(e⋅e)=ϕ(e)∗ϕ(e)
- i f ϕ ( e ) = 0 , t h u s ϕ ( r ) = ϕ ( e ⋅ r ) = ϕ ( e ) ∗ ϕ ( r ) = 0 if\ \ \phi(e)=0,thus\ \ \phi(r)=\phi(e\cdot r)=\phi(e)*\phi(r)=0 if ϕ(e)=0,thus ϕ(r)=ϕ(e⋅r)=ϕ(e)∗ϕ(r)=0,则 ϕ \phi ϕ是零同态;所以 ϕ \phi ϕ不是零同态要求 ϕ ( e ) ≠ 0 \phi(e)\neq0 ϕ(e)=0
- 猜想:当 ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e′则自然满射,原因尚未可知<?>
- ϕ ( R ) ⊆ R ′ \phi(R)\subseteq R' ϕ(R)⊆R′必为R‘的子环,由定理14.3
- ϕ ( r 1 ) ∘ ϕ ( r 2 ) = ϕ ( r 1 + r 2 ) ∈ R ′ \phi(r_1)\circ\phi(r_2)=\phi(r_1+r_2)\in R' ϕ(r1)∘ϕ(r2)=ϕ(r1+r2)∈R′
- ϕ ( r 1 ) ∘ ϕ ( r 1 ) − 1 = 0 ′ = ϕ ( 0 ) = ϕ ( r 1 − r 1 ) = ϕ ( r 1 ) ∘ ϕ ( − r 1 ) \phi(r_1)\circ\phi(r_1)^{-1}=0'=\phi(0)=\phi(r_1-r_1)=\phi(r_1)\circ\phi(-r_1) ϕ(r1)∘ϕ(r1)−1=0′=ϕ(0)=ϕ(r1−r1)=ϕ(r1)∘ϕ(−r1),则 ϕ ( r 1 ) − 1 = ϕ ( − r 1 ) ∈ R ′ \phi(r_1)^{-1}=\phi(-r_1)\in R' ϕ(r1)−1=ϕ(−r1)∈R′
- ϕ ( r 1 ) ∗ ϕ ( r 2 ) = ϕ ( r 1 r 2 ) ∈ R ′ \phi(r_1)*\phi(r_2)=\phi(r_1r_2)\in R' ϕ(r1)∗ϕ(r2)=ϕ(r1r2)∈R′
推论 14.1 :若两个环R与R‘同构, R ≅ R ′ R\cong R' R≅R′,则R为整环时,R‘也为整环;R为除环时,R’也为除环。
定理 14.7
设有整环R, c h a r R = p ( p ≠ 0 ) char R=p(p\neq0) charR=p(p=0),作映射
ϕ : R → R , ∀ a ∈ R , ϕ ( a ) = a p 是 R 的一个自同态映射且 i f a ≠ b , ϕ ( a ) ≠ ϕ ( b ) \phi:R\rightarrow R,\forall a\in R,\phi(a)=a^p\ 是 R 的一个自同态映射且\ if\ a\neq b,\phi(a)\neq\phi(b) ϕ:R→R,∀a∈R,ϕ(a)=ap 是R的一个自同态映射且 if a=b,ϕ(a)=ϕ(b)(内射)
证明:
- 证明为同态映射
在一个交换环中,二项式定理成立,即对任意的 a , b ∈ R , n ∈ N a,b\in R,n\in N a,b∈R,n∈N
( a + b ) n = ∑ i = 0 n ( n i ) a n − i b i , w h e r e ( n i ) = n ! i ! ( n − i ) ! (a+b)^n=\sum_{i=0}^{n}\left(\begin{matrix}n\\i\end{matrix}\right)a^{n-i}b^{i},where\ \left(\begin{matrix}n\\i\end{matrix}\right)=\frac{n!}{i!(n-i)!} (a+b)n=i=0∑n(ni)an−ibi,where (ni)=i!(n−i)!n!
当上式n=p时,易知p是素数(定理14.5),则除(p,0)=(p,p)=1外,其余各项系数均有因子p,故
( a + b ) p = a p + b p ( a − b ) p = a p − b p ( a b ) p = a p b p (a+b)^{p}=a^p+b^p\\ (a-b)^{p}=a^p-b^p\\ (ab)^{p}=a^pb^p (a+b)p=ap+bp(a−b)p=ap−bp(ab)p=apbp
$so\ \ \phi\ \ is\ \ a\ \ $automorphic mapping f r o m R → R ′ \ from\ \ R\to R' from R→R′
- 证明内射( ϕ ( a ) = ϕ ( b ) → a = b \phi(a)=\phi(b)\to a=b ϕ(a)=ϕ(b)→a=b)
内射,即 i f a ≠ b , t h u s ϕ ( a ) ≠ ϕ ( b ) if\ \ a\neq b,thus\ \ \phi(a)\neq\phi(b) if a=b,thus ϕ(a)=ϕ(b)(反证法)
假如
ϕ ( a ) = ϕ ( b ) , t h a t i s ϕ ( a ) − ϕ ( b ) = 0 , t h e n a p − b p = 0 , t h a t i s ( a − b ) p = 0 \phi(a)=\phi(b),that\ \ is\ \ \phi(a)-\phi(b)=0,then\ \ a^p-b^p=0,that\ \ is\ \ (a-b)^p=0 ϕ(a)=ϕ(b),that is ϕ(a)−ϕ(b)=0,then ap−bp=0,that is (a−b)p=0
因为整环无零因子,所以推出a-b=0,即a=b
第14章习题二
习题14.12
证明是子环
a + b ∈ R , − a ∈ R , a ⋅ b ∈ R a+b\in R,-a\in R,a\cdot b\in R a+b∈R,−a∈R,a⋅b∈R
习题14.13
已知A,B为R的子环,证明
A
∩
B
A\cap B
A∩B是R的子环
A ∩ B A\cap B A∩B中的元素一定有逆元
A,B中的元素都满足封闭性
习题14.15
令
2
Z
=
{
2
k
∣
k
∈
Z
}
2Z=\{2k|k\in Z\}
2Z={2k∣k∈Z}
(1)
ϕ ( z ) = 2 z \phi(z)=2z ϕ(z)=2z
(2)
2 = ϕ ( 1 ) = ϕ ( 1 ⋅ 1 ) ≠ ϕ ( 1 ) ⋅ ϕ ( 1 ) = 4 2=\phi(1)=\phi(1\cdot 1)\neq\phi(1)\cdot\phi(1)=4 2=ϕ(1)=ϕ(1⋅1)=ϕ(1)⋅ϕ(1)=4
因此不存在这样的映射
习题14.16
设
[
F
;
+
,
⋅
]
[F;+,\cdot]
[F;+,⋅]为域,
F
∗
=
F
−
{
0
}
F^*=F-\{0\}
F∗=F−{0},则
[
F
;
+
]
[F;+]
[F;+]不同构于
[
F
∗
;
⋅
]
[F^*;\cdot]
[F∗;⋅]
由定理14.6, ϕ ( 1 ) = 0 \phi(1)=0 ϕ(1)=0
ϕ ( 1 / 2 ) 2 = ϕ ( 1 / 2 + 1 / 2 ) = ϕ ( 1 ) = 0 \phi(1/2)^2=\phi(1/2+1/2)=\phi(1)=0 ϕ(1/2)2=ϕ(1/2+1/2)=ϕ(1)=0
所以 ϕ ( 1 / 2 ) = 0 \phi(1/2)=0 ϕ(1/2)=0,矛盾
习题14.20
分别在模3和模5的同余类环
[
R
;
+
,
⋅
]
[R;+,\cdot]
[R;+,⋅]上解下述方程组
14.3 多项式环
定义(域上的多项式环)
根据习题14.3(5)可知定义在域F上的多项式(Z不是域)
F
[
x
]
=
{
∑
i
=
0
n
a
i
x
i
∣
i
=
0
,
…
,
n
,
a
i
∈
F
}
F[x]=\{\sum_{i=0}^{n}a_ix^i|i=0,\dots,n,a_i\in F\}
F[x]={i=0∑naixi∣i=0,…,n,ai∈F}
关于多项式的乘法和加法构成整环,且称F[x]为域上的多项式环
本节中将证明有关整环[Z;+,·]的许多性质可以推广到多项式环中。
为此引进记号 d e g f ( x ) deg\ f(x) deg f(x),表示 F [ x ] ( ≠ 0 ) F[x](\neq0) F[x](=0)中的多项式 f ( x ) f(x) f(x)的次数
定理 14.8:对f(x)和g(x),有q(x)类似商,r(x)类似余数
f
(
x
)
=
g
(
x
)
q
(
x
)
+
r
(
x
)
f(x)=g(x)q(x)+r(x)
f(x)=g(x)q(x)+r(x)
其中
d
e
g
r
(
x
)
<
d
e
g
g
(
x
)
deg\ r(x)<deg\ g(x)
deg r(x)<deg g(x)或
r
(
x
)
=
0
r(x)=0
r(x)=0
推论 14.2:f(x) 被 (x-a) 除留的余式为 f(a)
证明:
f ( x ) = ( x − a ) q ( x ) + r ( x ) f ( a ) = r ( x ) f(x)=(x-a)q(x)+r(x)\\f(a)=r(x) f(x)=(x−a)q(x)+r(x)f(a)=r(x)
推论 14.3:(x-a)|f(x) 当且仅当f(a)=0
定义14.10(最大公因子)
h ( x ) 整除 f ( x ) 和 g ( x ) ;当 c ( x ) ∣ f ( x ) 且 c ( x ) ∣ g ( x ) 时,一定有 c ( x ) ∣ h ( x ) h(x)整除f(x)和g(x);当c(x)|f(x)且c(x)|g(x)时,一定有c(x)|h(x) h(x)整除f(x)和g(x);当c(x)∣f(x)且c(x)∣g(x)时,一定有c(x)∣h(x)
则称 h ( x ) h(x) h(x)是最大公因子, h ( x ) = G C D ( f ( x ) , g ( x ) ) h(x)=GCD(f(x),g(x)) h(x)=GCD(f(x),g(x))
定理14.9
- GCD(f,g)可由类似12.3节的长除法求得
- 当h(x)=GCD(f,g),必存在h(x)=s(x)f(x)+t(x)g(x)(左右式相抵)
由F[x]的定义,F是域,域中的每个元都有逆元,
而对 d e g f ( x ) > 1 deg f(x)>1 degf(x)>1时,不存在 f ( x ) g ( x ) = 1 f(x)g(x)=1 f(x)g(x)=1(最高次项不为0)
例14.9
在
Z
3
[
x
]
Z_3[x]
Z3[x]中
a
(
x
)
=
2
x
4
+
2
,
b
(
x
)
=
x
5
+
2
a(x)=2x^4+2,b(x)=x^5+2
a(x)=2x4+2,b(x)=x5+2,求GCD(a(x),b(x))以及
g
(
x
)
=
s
(
x
)
a
(
x
)
+
t
(
x
)
b
(
x
)
g(x)=s(x)a(x)+t(x)b(x)
g(x)=s(x)a(x)+t(x)b(x)
解:
(1)由长除法
x 5 + 2 = ( 2 x 4 + 2 ) ( 2 x ) + ( 2 + 2 x ) x^5+2=(2x^4+2)(2x)+(2+2x) x5+2=(2x4+2)(2x)+(2+2x)
2 x 4 + 2 = ( 2 x + 2 ) ( x 3 + 2 x 2 + x + 2 ) + 1 2x^4+2=(2x+2)(x^3+2x^2+x+2)+1 2x4+2=(2x+2)(x3+2x2+x+2)+1
gcd(x)=1
(2)
将(1)中的式子互相代入
2 x 4 + 2 = ( x 5 + 2 − ( 2 x 4 + 2 ) 2 x ) ( x 3 + 2 x 2 + x + 2 ) + 1 2x^4+2=(x^5+2-(2x^4+2)2x)(x^3+2x^2+x+2)+1 2x4+2=(x5+2−(2x4+2)2x)(x3+2x2+x+2)+1
( 2 x 4 + 2 ) ( 1 + 2 x ) ( x 3 + 2 x 2 + x + 2 ) − ( x 5 + 2 ) ( x 3 + 2 x 2 + x + 2 ) = 1 (2x^4+2)(1+2x)(x^3+2x^2+x+2)-(x^5+2)(x^3+2x^2+x+2)=1 (2x4+2)(1+2x)(x3+2x2+x+2)−(x5+2)(x3+2x2+x+2)=1
综上 s ( x ) = 2 x 3 + x 2 + 2 x + 1 , t ( x ) = 2 x 4 + x 3 + 2 x 2 + x + 1 s(x)=2x^3+x^2+2x+1,t(x)=2x^4+x^3+2x^2+x+1 s(x)=2x3+x2+2x+1,t(x)=2x4+x3+2x2+x+1
定义 14.11(可逆元)
当存在 a − 1 ∈ F [ x ] a^{-1}\in F[x] a−1∈F[x],使得 a a − 1 = 1 aa^{-1}=1 aa−1=1时,称 a a a为 F [ x ] F[x] F[x]中的可逆元,否则称不可逆元(一定为常数项)
定义 14.12(可约多项式)
如果存在 f ( x ) = h ( x ) t ( x ) f(x)=h(x)t(x) f(x)=h(x)t(x),称f(x)可约多项式(deg h,t>1)
如若 d e g h ( x ) = 0 deg\ h(x)=0 deg h(x)=0,此时 h ( x ) ∈ F ∗ h(x)\in F^* h(x)∈F∗为可逆元,则f(x)为不可约多项式
定理14.10 f ( x ) ∣ g ( x ) 且 g ( x ) ∣ f ( x ) f(x)|g(x)且g(x)|f(x) f(x)∣g(x)且g(x)∣f(x),当且仅当 f ( x ) = a g ( x ) , a ∈ F ∗ f(x)=ag(x),a\in F^* f(x)=ag(x),a∈F∗
证明:
必要性: f ( x ) = g ( x ) g ‾ ( x ) = f ( x ) f ‾ ( x ) g ‾ ( x ) f(x)=g(x)\overline g(x)=f(x)\overline f(x)\overline g(x) f(x)=g(x)g(x)=f(x)f(x)g(x),可逆 f ‾ ( x ) , g ‾ ( x ) ∈ F ∗ \overline f(x),\overline g(x)\in F^* f(x),g(x)∈F∗
充分性:易得
定理 14.11: g 1 = G C D ( f ( x ) , g ( x ) ) , g 2 = G C D ( f ( x ) , g ( x ) ) g_1=GCD(f(x),g(x)),g_2=GCD(f(x),g(x)) g1=GCD(f(x),g(x)),g2=GCD(f(x),g(x)),当且仅当 g 1 ( x ) = a g 2 ( x ) g_1(x)=ag_2(x) g1(x)=ag2(x)
证明:
必要性:由最大公因子的定义有, g 1 ∣ g 2 且 g 2 ∣ g 1 g_1|g_2且g_2|g_1 g1∣g2且g2∣g1,再由定理14.10
引理14.1: f ( x ) ∣ g ( x ) h ( x ) 且 G C D ( f ( x ) , g ( x ) ) = a 时 f(x)|g(x)h(x)且GCD(f(x),g(x))=a时 f(x)∣g(x)h(x)且GCD(f(x),g(x))=a时,有 f ( x ) ∣ h ( x ) f(x)|h(x) f(x)∣h(x)
==引理14.2:p(x)为不可约多项式, f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x],若 p ( x ) ∣ f ( x ) g ( x ) p(x)|f(x)g(x) p(x)∣f(x)g(x),则 p ( x ) ∣ f ( x ) p(x)|f(x) p(x)∣f(x)或 p ( x ) ∣ g ( x ) p(x)|g(x) p(x)∣g(x)==
证明:
p ( x ) = h ( x ) G C D ( p ( x ) , f ( x ) ) p(x)=h(x)GCD(p(x),f(x)) p(x)=h(x)GCD(p(x),f(x)),注:是p(x)不是g(x)
因为p(x)不可约,所以必有其一为常数项
- h ( x ) ∈ F ∗ ,则 p ( x ) ∣ G C D ( p , f ) h(x)\in F^*,则p(x)|GCD(p,f) h(x)∈F∗,则p(x)∣GCD(p,f),有 p ( x ) ∣ f ( x ) p(x)|f(x) p(x)∣f(x)
- 若 G C D ( p , f ) ∈ F ∗ GCD(p,f)\in F^* GCD(p,f)∈F∗,由引理14.2知 p ( x ) ∣ g ( x ) p(x)|g(x) p(x)∣g(x)
定理14.12(唯一因式分解定理)
多项式环 F [ x ] F[x] F[x]中的元素,或属于 F F F或可分解为有限个不可约多项式之积,且分解是唯一的(注:系数可以成比例)
唯一: q i ( x ) = a i p ( x ) q_i(x)=a_ip_(x) qi(x)=aip(x)
证明:
首先证明可分解性,对 deg f(x)=k 作归纳,deg f(x)=k时,分为可约和不可约两种情况
唯一性:由假设 f ( x ) = p 1 ( x ) … p n ( x ) = q 1 ( x ) … q m ( x ) f(x)=p_1(x)\dots p_n(x)=q_1(x)\dots q_m(x) f(x)=p1(x)…pn(x)=q1(x)…qm(x),对n作归纳
两边同除p1(x),由于是p1(x)不可约的,右边也可以除断
第14章习题三
习题14.22
在
[
Z
3
;
⊕
,
⊗
]
[Z_3;\oplus,\otimes]
[Z3;⊕,⊗]和
[
Q
:
+
,
⋅
]
[Q:+,\cdot]
[Q:+,⋅],求下面多项式的最大公因子:
f
(
x
)
=
x
4
+
1
,
g
(
x
)
=
x
3
+
x
+
1
f(x)=x^4+1,g(x)=x^3+x+1
f(x)=x4+1,g(x)=x3+x+1
G C D ( a , b ) = { a , i f b = 0 G C D ( a , a m o d b , i f b > 0 ) GCD(a,b)=\begin{cases}a,if\ b=0\\GCD(a,a\ mod\ b,if\ b>0)\end{cases} GCD(a,b)={a,if b=0GCD(a,a mod b,if b>0)
解:运用多项式的辗转相除法
(1)
x 4 + 1 = ( x 3 + x + 1 ) x + ( 2 x 2 + 2 x + 1 ) x 3 + x + 1 = ( 2 x 2 + 2 x + 1 ) ( 2 x + 1 ) x^4+1=(x^3+x+1)x+(2x^2+2x+1)\\ x^3+x+1=(2x^2+2x+1)(2x+1) x4+1=(x3+x+1)x+(2x2+2x+1)x3+x+1=(2x2+2x+1)(2x+1)
所以公因子是 ( 2 x 2 + 2 x + 1 ) (2x^2+2x+1) (2x2+2x+1)(2)
x 4 + 1 = ( x 3 + x + 1 ) x − x 2 − x + 1 x 3 + x + 1 = ( − x 2 − x + 1 ) ( − x + 1 ) + 2 x − x 2 − x + 1 = 2 x ( − 1 2 x − 1 2 ) + 1 2 x = 1 ( 2 x ) x^4+1=(x^3+x+1)x-x^2-x+1\\ x^3+x+1=(-x^2-x+1)(-x+1)+2x\\ -x^2-x+1=2x(-\frac12x-\frac12)+1\\ 2x=1(2x) x4+1=(x3+x+1)x−x2−x+1x3+x+1=(−x2−x+1)(−x+1)+2x−x2−x+1=2x(−21x−21)+12x=1(2x)
所以公因子是1
习题14.23
在域
Z
3
Z_3
Z3上分解多项式
x
4
+
x
3
+
x
+
2
x^4+x^3+x+2
x4+x3+x+2为不可约多项式的积
先试商,不存在一次项的因式
假设存在二次项因式 a 1 x 2 + b 1 x + c 1 a_1x^2+b_1x+c_1 a1x2+b1x+c1和 a 2 x 2 + b 2 x + c 2 a_2x^2+b_2x+c_2 a2x2+b2x+c2
![]()
14.4 理想与商环
定义14.13(理想)
-
R为环,I为R的子集合
-
a − b ∈ I a-b\in I a−b∈I
-
∀ r ∈ R , a r , r a ∈ I \forall r\in R,ar,ra\in I ∀r∈R,ar,ra∈I
理想是不是子环?
- 加法满足有逆元,封闭性,[I;+]是[R;+]的子群,也是Abel群
- 乘法满足封闭性,在R中则有可结合,是半群,理想不一定可交换
- 加乘满足分配律
- 理想中不一定有单位元
综上,理想是乘法满足交换律的子环,可类比正规子群
定义(生成子集合)
S是环R的子集,定义(S)
- a ∈ S , t h e n a ∈ ( S ) a\in S,then\ \ a\in (S) a∈S,then a∈(S)
- a , b ∈ S , t h e n a − b ∈ ( S ) a,b\in S,then\ \ a-b\in (S) a,b∈S,then a−b∈(S)
- a ∈ S , r ∈ R , t h e n a r , r a ∈ ( S ) a\in S,r\in R,then\ \ ar,ra\in (S) a∈S,r∈R,then ar,ra∈(S)
称 (S) 是环 R 中由 S 生成的理想,特别地,当 S = { a } S=\{a\} S={a}时,S即由a生成的理想,记为 (a)
定义14.14(主理想)
由一个元素生成的理想称为该环的主理想,一个所有理想都是主理想的环是主理想环
例如:[Z;+,·]中, { k n ∣ n ∈ Z } \{kn|n\in Z\} {kn∣n∈Z}是元素 k 生成的主理想
定理14.13:多项式环F[x]是主理想环
平凡理想,(0)={0},(1)=F[x]都是主理想
非平凡理想,取 p ( x ) ∈ I p(x)\in I p(x)∈I且p(x)的阶是 I 中最小的,根据定理14.8
对任意 f ( x ) ∈ I , f ( x ) = p ( x ) q ( x ) + r ( x ) 对任意f(x)\in I,f(x)=p(x)q(x)+r(x) 对任意f(x)∈I,f(x)=p(x)q(x)+r(x)
若 r ( x ) ≠ 0 r(x)\neq 0 r(x)=0, r ( x ) = f ( x ) − p ( x ) q ( x ) ∈ I r(x)=f(x)-p(x)q(x)\in I r(x)=f(x)−p(x)q(x)∈I,而且 r(x) 的阶更小,矛盾,所以r(x)=0
定义(商集合)
由理想的定义知,
[
I
;
+
]
[I;+]
[I;+]是
[
R
;
+
]
[R;+]
[R;+]的正规子群(加法满足交换律),作
I
I
I 的陪集如下
I
+
r
=
{
i
+
r
∣
i
∈
I
}
,
显然
I
+
r
=
r
+
I
I+r=\{i+r|i\in I\},显然\ I+r=r+I
I+r={i+r∣i∈I},显然 I+r=r+I
由正规子群的性质知下式是R的一个商集合
R
/
I
=
{
I
+
r
∣
r
∈
R
}
R/I=\{I+r|r\in R\}
R/I={I+r∣r∈R}
定义 ⊕ ⊗ \oplus\otimes ⊕⊗
( I + r 1 ) ⊕ ( I + r 2 ) = I + ( r 1 + r 2 ) ( I + r 1 ) ⊗ ( I + r 2 ) = I + ( r 1 r 2 ) (I+r_1)\oplus(I+r_2)=I+(r_1+r_2)\\ (I+r_1)\otimes(I+r_2)=I+(r_1r_2) (I+r1)⊕(I+r2)=I+(r1+r2)(I+r1)⊗(I+r2)=I+(r1r2)
定理:如上定义的 [ R / I ; ⊕ , ⊗ ] [R/I;\oplus,\otimes] [R/I;⊕,⊗]是环
证明: ⊕ ⊗ 满足分配律 \oplus \otimes满足分配律 ⊕⊗满足分配律
定义14.15(商环)
[ R / I ; ⊕ , ⊗ ] [R/I;\oplus,\otimes] [R/I;⊕,⊗]是环R关于理想 I 的商环,简记为 R / I 或 R-I
定义(多项式环的商环)*
( p ( x ) ) = { p ( x ) h ( x ) ∈ F [ x ] } (p(x))=\{p(x)h(x)\in F[x]\} (p(x))={p(x)h(x)∈F[x]}
对任意 g ( x ) ∈ F [ x ] g(x)\in F[x] g(x)∈F[x],存在 g ( x ) = p ( x ) q ( x ) + r ( x ) g(x)=p(x)q(x)+r(x) g(x)=p(x)q(x)+r(x)
设deg p(x)=n,可设 r ( x ) = a 0 + a 1 x + ⋯ + a n − 1 x n − 1 r(x)=a_0+a_1x+\dots+a_{n-1}x^{n-1} r(x)=a0+a1x+⋯+an−1xn−1,可取r(x)为g(x)所在陪集的代表元,使 g ( x ) ∈ F [ x ] / ( p ( x ) ) g(x)\in F[x]/(p(x)) g(x)∈F[x]/(p(x))
F [ x ] / ( p ( x ) ) = { ( p ( x ) ) + ∑ a i x i ∣ a i ∈ F , i = 0 , … , n − 1 } F[x]/(p(x))=\{(p(x))+\sum a_ix^i|a_i\in F,i=0,\dots,n-1\} F[x]/(p(x))={(p(x))+∑aixi∣ai∈F,i=0,…,n−1}
是F[x]关于(p(x))的商环
一个具体的例子:
取p(x)=x2+x+1
Z 2 [ x ] / ( p ( x ) ) = { ( p ( x ) ) , ( p ( x ) ) + 1 , ( p ( x ) ) + x , ( p ( x ) ) + x + 1 } Z_2[x]/(p(x))=\{(p(x)),(p(x))+1,(p(x))+x,(p(x))+x+1\} Z2[x]/(p(x))={(p(x)),(p(x))+1,(p(x))+x,(p(x))+x+1}
定义14.16(同态核)
K ( ϕ ) = { ϕ ( x ) = 0 ′ } , ϕ : R → S , K(\phi)=\{\phi(x)=0'\},\phi:R\to S, K(ϕ)={ϕ(x)=0′},ϕ:R→S, 0’是S中的加法单位元
定理14.15: K ( ϕ ) K(\phi) K(ϕ)是R的理想
证明:
- 显然 0 ∈ K ( ϕ ) 0\in K(\phi) 0∈K(ϕ)(原因: ϕ ( 0 + x ) = ϕ ( 0 ) + ϕ ( x ) \phi(0+x)=\phi(0)+\phi(x) ϕ(0+x)=ϕ(0)+ϕ(x))
- ϕ ( x − y ) = ϕ ( x ) − ϕ ( y ) = 0 ′ \phi(x-y)=\phi(x)-\phi(y)=0' ϕ(x−y)=ϕ(x)−ϕ(y)=0′
- ϕ ( x r ) = ϕ ( x ) ϕ ( r ) = 0 ′ \phi(xr)=\phi(x)\phi(r)=0' ϕ(xr)=ϕ(x)ϕ(r)=0′
定理14.16(环同态基本定理)
如果两环R与S同态, ϕ \phi ϕ为其满同态映射,则 R / K e r ϕ ≅ S R/Ker\phi\cong S R/Kerϕ≅S
证明:作映射 ψ : R / K → S \psi:R/K\to S ψ:R/K→S,使得对任意陪集 K+r 有
ψ ( K + r ) = ϕ ( r ) ∈ S , r ∈ R \psi(K+r)=\phi(r)\in S,r\in R ψ(K+r)=ϕ(r)∈S,r∈R
在此只证明 ψ \psi ψ 为同态映射
ψ ( ( K + r 1 ) ⊕ ( K + r 2 ) ) = ⋯ = ψ ( ( K + r 1 ) + ( K + r 2 ) ) ψ ( ( K + r 1 ) ⊗ ( K + r 2 ) ) = ⋯ = ψ ( ( K + r 1 ) ⋅ ( K + r 2 ) ) \psi((K+r_1)\oplus(K+r_2))=\dots=\psi((K+r_1)+(K+r_2))\\ \psi((K+r_1)\otimes(K+r_2))=\dots=\psi((K+r_1)\cdot(K+r_2)) ψ((K+r1)⊕(K+r2))=⋯=ψ((K+r1)+(K+r2))ψ((K+r1)⊗(K+r2))=⋯=ψ((K+r1)⋅(K+r2))
类似群同态基本定理,得证
例14.14
证明
R
[
x
]
/
(
x
2
+
1
)
≅
C
R[x]/(x^2+1)\cong C
R[x]/(x2+1)≅C
(1)
R [ x ] / ( x 2 + 1 ) = { a + b x ∣ a , b ∈ R } R[x]/(x^2+1)=\{a+bx|a,b\in R\} R[x]/(x2+1)={a+bx∣a,b∈R}
φ : R [ x ] → C , φ ( a + b x ) = a + b i \varphi:R[x]\to C,\varphi(a+bx)=a+bi φ:R[x]→C,φ(a+bx)=a+bi
容易验证是同构映射
(2)用环同态基本定理
φ : R [ x ] → C , φ ( f ( x ) ) = f ( i ) \varphi:R[x]\to C,\varphi(f(x))=f(i) φ:R[x]→C,φ(f(x))=f(i),显然满射
K ( φ ) = { f ( x ) ∣ f ( i ) = 0 } = ( x 2 + 1 ) K(\varphi)=\{f(x)|f(i)=0\}=(x^2+1) K(φ)={f(x)∣f(i)=0}=(x2+1),该理想中均有因式x2+1
定理14.17* F[x]是多项式环,商环 F [ x ] / ( p ( x ) ) F[x]/(p(x)) F[x]/(p(x)) 是域,当且仅当 p ( x ) p(x) p(x) 为 F [ x ] F[x] F[x] 上的不可约多项式(习题14.31)
推论14.4 Z p = Z / ( p ) Z_p=Z/(p) Zp=Z/(p) 为域当且仅当p是素数
证明:
与域中无零因子矛盾
例如:
Z 4 = { 0 , 1 , 2 , 3 } , 2 ∗ 2 = 0 Z_4=\{0,1,2,3\},2*2=0 Z4={0,1,2,3},2∗2=0,则 2 是 Z 4 Z_4 Z4 中的零因子
定理14.18 R为单位元交换环,且 R ≠ 0 R\neq {0} R=0,则R为域当且仅当R只有平凡理想{0}与 R
证明:
- 必要性:对任意非{0}的理想 I I I, a ∈ I , a a − 1 ∈ I a\in I,aa^{-1}\in I a∈I,aa−1∈I,即单位元在理想中,所以所有元素均属于 I I I
- 充分性:对任意的(a), 1 ∈ ( a ) 1\in (a) 1∈(a),所以R中存在 b = a − 1 b=a^{-1} b=a−1(非零元有逆包含无零因子)
对商群商环的形象理解
第14章习题四
习题14.27
判断下列集合是否是子环或者理想
(1) 整数集Z,在整系数多项式环Z[x]中
(2) 自然数集N,在整数环Z中
(3) 整系数多项式集合Z[x]在有理数域上的多项式环Q[x]中
(4) 常数项为偶数的多项式集合I[x]在整数多项式环Z[x]中
(5)*首项系数为偶数的多项式集合在整系数多项式环Z[x]中
(1)是子环
有加法乘法的封闭性,加法无零元有逆元
不满足 a r ∈ Z ar\in Z ar∈Z,可举反例为1和x,x不属于Z
(2)不是子环
1无逆元
(3)是子环
有加法逆元,加法乘法均有封闭性
不满足 a r ∈ Z [ x ] ar\in Z[x] ar∈Z[x]
(4)是理想
加乘均满足封闭性(0是偶数),有加法逆元
∀ g ( x ) ∈ Z [ x ] , f ( x ) ∈ I [ x ] \forall g(x)\in Z[x],f(x)\in I[x] ∀g(x)∈Z[x],f(x)∈I[x],乘积的常数项也为偶数
(5)不是子环
2 x 2 + x 2x^2+x 2x2+x和 − 2 x 2 + 1 -2x^2+1 −2x2+1相加破坏加法封闭性
习题14.28
在Z[x]环中,令I为x和2生成的一个理想,证明
(1) I是所有带偶常数的所有多项式的集合
(2) I不是主理想
(3) 商环 Z [ x ] / I Z[x]/I Z[x]/I同构于 Z 2 Z_2 Z2
(1)
I是x和2生成的理想,因此I可以表示为
I = { x ⋅ f ( x ) + 2 ⋅ g ( x ) ∣ f ( x ) , g ( x ) ∈ Z [ x ] } I=\{x\cdot f(x)+2\cdot g(x)|f(x),g(x)\in Z[x]\} I={x⋅f(x)+2⋅g(x)∣f(x),g(x)∈Z[x]}
而
F = { x ⋅ f ( x ) + 2 k ∣ f ( x ) ∈ Z [ x ] , k ∈ Z } F=\{x\cdot f(x)+2k|f(x)\in Z[x],k\in Z\} F={x⋅f(x)+2k∣f(x)∈Z[x],k∈Z}
显然 F ⊆ I F\subseteq I F⊆I∀ i ∈ I , i = x f ( x ) + 2 x g ′ ( x ) + 2 c , 其中 g ( x ) = x g ′ ( x ) + c \forall i\in I,i=xf(x)+2xg'(x)+2c,其中g(x)=xg'(x)+c ∀i∈I,i=xf(x)+2xg′(x)+2c,其中g(x)=xg′(x)+c
(2)
要证明理想不是主理想,只需证其不能被一个元素生成
由定理14.13的证明,多项式环理想的生成元是环中阶最小的,记为p(x)
显然在此理想中阶最小为0,可能的生成元是2,显然 I ≠ ( 2 ) I\neq(2) I=(2)
所以不是主理想
(3)
Z [ x ] / I = { I + r ∣ r ∈ R } = { { I } , { I + 1 } } Z[x]/I=\{I+r|r\in R\}=\{\{I\},\{I+1\}\} Z[x]/I={I+r∣r∈R}={{I},{I+1}}
或者利用环同态定理
构造同态映射
ϕ ( f ( x ) ) = { [ 0 ] , f ( x ) 常数项为偶数 [ 1 ] , f ( x ) 常数项为奇数 \phi(f(x))=\begin{cases} [0],f(x)常数项为偶数\\ [1],f(x)常数项为奇数 \end{cases} ϕ(f(x))={[0],f(x)常数项为偶数[1],f(x)常数项为奇数
显然 ϕ \phi ϕ是一个同态映射且为满射K e r ϕ = I Ker\phi=I Kerϕ=I
习题14.29
设R是环,a,b和ab-1是R中的可逆元,证明
a
−
b
−
1
a-b^{-1}
a−b−1和
(
a
−
b
−
1
)
−
1
−
a
−
1
(a-b^{-1})^{-1}-a^{-1}
(a−b−1)−1−a−1是可逆的
a − b − 1 = ( a b − 1 ) b − 1 a-b^{-1}=(ab-1)b^{-1} a−b−1=(ab−1)b−1,其逆元为 b ( a b − 1 ) − 1 b(ab-1)^{-1} b(ab−1)−1
( a − b − 1 ) − 1 − a − 1 = b ( a b − 1 ) − 1 − a − 1 = ( b − a − 1 ( a b − 1 ) ) ( a b − 1 ) − 1 = a − 1 ( a b − 1 ) − 1 \begin{aligned}(a-b^{-1})^{-1}-a^{-1}&=b(ab-1)^{-1}-a^{-1}\\&=(b-a^{-1}(ab-1))(ab-1)^{-1}\\&=a^{-1}(ab-1)^{-1}\end{aligned} (a−b−1)−1−a−1=b(ab−1)−1−a−1=(b−a−1(ab−1))(ab−1)−1=a−1(ab−1)−1
其逆元为 ( a b − 1 ) a (ab-1)a (ab−1)a
b ( a b − 1 ) − 1 − a − 1 ( ( a b − 1 ) a ) = b a − a − 1 ( a b − 1 ) a b(ab-1)^{-1}-a^{-1}((ab-1)a)=ba-a^{-1}(ab-1)a b(ab−1)−1−a−1((ab−1)a)=ba−a−1(ab−1)a
习题14.31
证明
Z
2
[
x
]
/
(
x
2
+
x
+
1
)
Z_2[x]/(x^2+x+1)
Z2[x]/(x2+x+1)是域,并写出它的加法和乘法运算表
Z 2 [ x ] / ( x 2 + x + 1 ) = { a + b x ∣ a , b ∈ Z 2 } Z_2[x]/(x^2+x+1)=\{a+bx|a,b\in Z_2\} Z2[x]/(x2+x+1)={a+bx∣a,b∈Z2}
可以设其中的元素为0,1,x,1+x
根据定理14.17,只需证明 x 2 + x + 1 x^2+x+1 x2+x+1是不可约多项式
显然它没有一次因式,因此不可约
![]()
习题14.32
证明
Q
[
x
]
/
(
x
2
−
2
)
Q[x]/(x^2-2)
Q[x]/(x2−2)是域,写出其元素表达式,并求元素
(
x
2
−
2
)
+
3
x
+
4
(x^2-2)+3x+4
(x2−2)+3x+4与
(
x
2
−
2
)
+
5
x
−
6
(x^2-2)+5x-6
(x2−2)+5x−6的和与积,并求元素
(
x
2
−
2
)
+
x
+
1
(x^2-2)+x+1
(x2−2)+x+1之逆元
2 ∉ Q \sqrt2\not\in Q 2∈Q,所以p(x)为不可约多项式,由定理14.17得证
![]()
Q ( x ) / ( x 2 − 2 ) = { a + b x ∣ a , b ∈ Q } Q(x)/(x^2-2)=\{a+bx|a,b\in Q\} Q(x)/(x2−2)={a+bx∣a,b∈Q},由定义14.15
和为(p(x))+8x-2,积为(p(x))+2x+6
((p(x))+x+1)((p(x))+a+bx)=(p(x))+1
解得:a=-1,b=1,即逆元是(p(x))+x-1
习题14.35
设R是环,
R
1
R_1
R1是R的子环,I是R的理想,证明:
( R 1 + I ) / I ≅ R 1 / ( R 1 ∩ I ) (R_1+I)/I\cong R_1/(R_1\cap I) (R1+I)/I≅R1/(R1∩I),其中 R 1 + I = { a + b ∣ a ∈ R 1 , b ∈ I } R_1+I=\{a+b|a\in R_1,b\in I\} R1+I={a+b∣a∈R1,b∈I}
证明:
( R 1 + I ) / I = R 1 / I = { I + r 1 ∣ r 1 ∈ R 1 } (R_1+I)/I=R_1/I=\{I+r_1|r_1\in R_1\} (R1+I)/I=R1/I={I+r1∣r1∈R1}
ϕ ( r 1 ) = I + r 1 : R 1 → ( R 1 + I ) / I \phi(r_1)=I+r_1:R_1\to (R_1+I)/I ϕ(r1)=I+r1:R1→(R1+I)/I
显然满射、同态映射
x ∈ K e r ϕ , ϕ ( x ) = I + x = I x\in Ker\phi,\phi(x)=I+x=I x∈Kerϕ,ϕ(x)=I+x=I
K e r ϕ ⊆ R 1 , K e r ϕ ⊆ I Ker\phi\subseteq R_1,Ker\phi\subseteq I Kerϕ⊆R1,Kerϕ⊆I,得证
习题14.36
(1) 证明:Z[x]上的理想 I = ( 3 , x 3 − x 2 + 2 x − 1 ) I=(3,x^3-x^2+2x-1) I=(3,x3−x2+2x−1)不是主理想
(2) Z [ x ] / I ≅ Z 3 [ x ] / ( x 3 − x 2 + 2 x − 1 ) Z[x]/I\cong Z_3[x]/(x^3-x^2+2x-1) Z[x]/I≅Z3[x]/(x3−x2+2x−1)
(3) 问:Z[x]/I是不是整环,说明理由
(1)
显然不是,不能由3生成。
由定理类比:多项式环中的理想都是其中次数最小的多项式生成的
(2)
Z 3 [ x ] / ( p ( x ) ) = { a x 2 + b x + c ∣ a , b , c = [ 0 ] , [ 1 ] , [ 2 ] } Z_3[x]/(p(x))=\{ax^2+bx+c|a,b,c=[0],[1],[2]\} Z3[x]/(p(x))={ax2+bx+c∣a,b,c=[0],[1],[2]}
ϕ ( f ( x ) ) = ϕ ( h ( x ) p ( x ) + 3 q ( x ) + a x 2 + b x + c ) = ( p ( x ) ) + a x 2 + b x + c \phi(f(x))=\phi(h(x)p(x)+3q(x)+ax^2+bx+c)=(p(x))+ax^2+bx+c ϕ(f(x))=ϕ(h(x)p(x)+3q(x)+ax2+bx+c)=(p(x))+ax2+bx+c
由f(x)的定义已知Ker\phi=I
(3)
(2)中右式中为不可约多项式,所以右式是域,所以是整环
第14章习题五
0
多项式关于模某不可约多项式的逆的计算
类似于例14.9
p ( x ) = x 8 + x 4 + x 3 + x + 1 p(x)=x^8+x^4+x^3+x+1 p(x)=x8+x4+x3+x+1是不可约多项式
Z 2 [ x ] / ( p ( x ) ) Z_2[x]/(p(x)) Z2[x]/(p(x))是域
x 6 + x 4 + x 2 + x + 1 , x 7 + x + 1 ∈ Z 2 [ x ] / ( x 8 + x 4 + x 3 + x + 1 ) x^6+x^4+x^2+x+1,x^7+x+1\in Z_2[x]/(x^8+x^4+x^3+x+1) x6+x4+x2+x+1,x7+x+1∈Z2[x]/(x8+x4+x3+x+1)
( x 6 + x 4 + x 2 + x + 1 ) ⋅ ( x 7 + x + 1 ) m o d p ( x ) = x 7 + x 6 + 1 (x^6+x^4+x^2+x+1)\cdot (x^7+x+1)mod\ p(x)=x^7+x^6+1 (x6+x4+x2+x+1)⋅(x7+x+1)mod p(x)=x7+x6+1
其中 x 6 + x 4 + x 2 + x + 1 x^6+x^4+x^2+x+1 x6+x4+x2+x+1的逆元是 x 7 + x 5 + x 4 + x 3 + x 2 + x + 1 x^7+x^5+x^4+x^3+x^2+x+1 x7+x5+x4+x3+x2+x+1
方法:利用1=s(x)f(x)+t(x)g(x),实质是求s(x),利用辗转相除法
1 = s ( x ) ( x 6 + x 4 + x 2 + x + 1 ) + t ( x ) ( x 8 + x 4 + x 3 + x + 1 ) 1=s(x)(x^6+x^4+x^2+x+1)+t(x)(x^8+x^4+x^3+x+1) 1=s(x)(x6+x4+x2+x+1)+t(x)(x8+x4+x3+x+1)
$$
\begin{aligned}
&x8+x4+x3+x+1=(x2+1)(x6+x4+x2+x+1)+x4\
&x6+x4+x2+x+1=(x2+1)x4+x2+x+1\
&x4=(x2+x)(x^2+x+1)+x\
&x^2+x+1=(x+1)x+1\
&故\
&1=(x2+x+1)-(x+1)x\
&=(x2+x+1)-(x+1)(x4-(x2+x)(x2+x+1))\
&=(1+(x+1)(x2+x))(x2+x+1)+(x+1)x4\
&=(1+(x+1)(x2+x))((x6+x4+x2+x+1)-(x2+1)x4) +(x+1)x4\
&=(x3+x+1)(x6+x4+x2+x+1)+((x3+x+1)(x2+1) +(x+1))x4\
&=(x3+x+1)(x6+x4+x2+x+1)+(x5+x2)((x8+x4+x3+x+1)-(x2+1)(x6+x4+x2+x+1))\
&=((x3+x+1)+(x5+x2)(x2+1))(x6+x4+x2+x+1)+ (x5+x2)(x8+x4+x3+x+1)\
&=(x7+x5+x4+x3+x2+x+1)(x6+x4+x2+x+1)+ (x5+x2)(x8+x4+x3+x+1)\\end{aligned}
$$
所以 x 6 + x 4 + x 2 + x + 1 x^6+x^4+x^2+x+1 x6+x4+x2+x+1关于模 x 8 + x 4 + x 3 + x + 1 x^8+x^4+x^3+x+1 x8+x4+x3+x+1的逆元是x 7 + x 5 + x 4 + x 3 + x 2 + x + 1 x^7+x^5+x^4+x^3+x^2+x+1 x7+x5+x4+x3+x2+x+1
3
请计算
Z
2
[
x
]
Z_2[x]
Z2[x]上
x
7
+
x
+
1
x^7+x+1
x7+x+1模多项式
x
8
+
x
4
+
x
3
+
x
+
1
x^8+x^4+x^3+x+1
x8+x4+x3+x+1的逆
1
请举例说明**定理14.6(2)**中若同构映射
ϕ
\phi
ϕ不是满射,即使不是零同态,结论不成立
只有无零因子环有子环与环单位元相同
举反例,R’中有零因子,则上述定理成立
取A的子环B,C同构映射到B,C的单位元映射到B的单位元,但不一定是A的
2
请举例说明**定理14.6(2)**中若
ϕ
\phi
ϕ不是满射,即使R’无零因子,结论不成立
举反例, ϕ \phi ϕ是零同态
4
设A,B是环R的两个理想,并且
B
⊆
A
B\subseteq A
B⊆A,证明:
(1) A / B A/B A/B是 R / B R/B R/B的理想
(2) ( R / B ) / ( A / B ) ≅ R / A (R/B)/(A/B)\cong R/A (R/B)/(A/B)≅R/A
(1)证明是理想:两板斧
A / B = { B + a ∣ a ∈ A } A/B=\{B+a|a\in A\} A/B={B+a∣a∈A}
B + ( a + c ) ∈ A / B ⊆ R / B B+(a+c)\in A/B\subseteq R/B B+(a+c)∈A/B⊆R/B
B + ( a r ) 中 a r ∈ A , ∴ B + a r ∈ A / B B+(ar)中ar\in A,\therefore B+ar\in A/B B+(ar)中ar∈A,∴B+ar∈A/B
显然 A / B ∈ R / B = { B + r ∣ r ∈ R } A/B\in R/B=\{B+r|r\in R\} A/B∈R/B={B+r∣r∈R}
(2)证明同构,环同态定理或同阶
ϕ ( B + r ) = A + r \phi(B+r)=A+r ϕ(B+r)=A+r,显然是同态映射且为满射
理解:理想是环中等间距
K e r ϕ = B + x , ϕ ( B + x ) = A + x = A Ker\phi=B+x,\phi(B+x)=A+x=A Kerϕ=B+x,ϕ(B+x)=A+x=A
x ∈ A , B + x ∈ A / B , K e r ϕ ⊆ A / B x\in A,B+x\in A/B,Ker\phi\subseteq A/B x∈A,B+x∈A/B,Kerϕ⊆A/B
ϕ ( B + a ) = A + a = A ∈ K e r ϕ , A / B ⊆ K e r ϕ \phi(B+a)=A+a=A\in Ker\phi,A/B\subseteq Ker\phi ϕ(B+a)=A+a=A∈Kerϕ,A/B⊆Kerϕ
由同态基本定理得到结论