【代数结构与数理逻辑(四)】环

第14章 环

14.1 环的定义与性质

定义 14.1(环)

代数系统 [ R ; + , ∗ ] [R;+,*] [R;+,]​中,其中+,*为定义在R上的二元运算,满足要求的称

  1. +可结合
  2. +可交换
  3. +有单位元(即环中一定有零元)
  4. 每个元有加法逆元
  5. *可结合
  6. + ∗ +* +满足分配律: a ∗ ( b + c ) = ( a ∗ b ) + ( a ∗ c ) a * (b+c)=(a * b)+(a * c) a(b+c)=(ab)+(ac), ( b + c ) ∗ a = ( b ∗ a ) + ( c ∗ a ) (b+c) * a=(b * a)+(c * a) (b+c)a=(ba)+(ca)

上述定义可简记为 [ R ; + ] [R;+] [R;+]为Able群; [ R ; ∗ ] [R;*] [R;]为半群,两个运算满足分配律

定义 14.2(有单位元环、交换环)

[ R ; + , ∗ ] [R;+,*] [R;+,]为环,当乘法有单位元称有单位元环,并把乘法的单位元叫做环的单位元

[ R ; + , ∗ ] [R;+,*] [R;+,]​为环,当乘法是交换的,则称它为交换环

定理(环的性质)

定理 14.1(环中性质)

[ R ; + , ⋅ ] [R;+, \cdot] [R;+,]为环,则任意 a , b ∈ R a,b \in R a,bR,有

(1) a ⋅ 0 = 0 ⋅ a = 0 a \cdot 0=0\cdot a=0 a0=0a=0

(2) a ⋅ ( − b ) = ( − a ) ⋅ b = − ( a b ) a\cdot (-b)=(-a)\cdot b=-(ab) a(b)=(a)b=(ab)

证明: 由分配律

(1) a ⋅ 0 = a ⋅ ( 0 + 0 ) = a ⋅ 0 + a ⋅ 0 a\cdot 0=a\cdot (0+0)=a\cdot 0+a\cdot 0 a0=a(0+0)=a0+a0

即加法单位元是环的零元,环必有零元

(2) a ⋅ ( − b ) + a ⋅ b = a ⋅ ( − b + b ) = 0 ∴ a ⋅ ( − b ) = − ( a ⋅ b ) a\cdot(-b)+a\cdot b=a\cdot(-b+b)=0 \therefore a\cdot(-b)=-(a\cdot b) a(b)+ab=a(b+b)=0a(b)=(ab)

定义 14.3(零因子)

[ R ; + , ⋅ ] [R;+,\cdot] [R;+,] 为环, a , b ∈ R , a ≠ 0 , b ≠ 0 a,b\in R,a\not=0,b\not=0 a,bR,a=0,b=0,但 a ⋅ b = 0 a\cdot b=0 ab=0,称 a a a R R R的左零因子, b b b R R R的右零因子,统称零因子

定义 14.4(整环)

  1. [ R ; + , ⋅ ] [R;+,\cdot ] [R;+,]为有单位元环

  2. · 满足交换律

  3. R中无零因子,即如果 a ⋅ b = 0 , a\cdot b=0, ab=0 a = 0 a=0 a=0 b = 0 b=0 b=0

此时称R为整环

定理 14.2: [ R ; + , ⋅ ] [R;+,\cdot] [R;+,]为整环,则其乘法满足消去律

证明:

设有 a ≠ 0 a\not=0 a=0 a b = a c ab=ac ab=ac,则 a ( b − c ) = a b − a c = 0 a(b-c)=ab-ac=0 a(bc)=abac=0

由于整环中无零因子,故有 ( b − c ) = 0 (b-c)=0 (bc)=0,满足消去律

定义 14.5 (除环)

[ R ; + , ⋅ ] [R;+,\cdot] [R;+,] ∣ R ∣ ≥ 2 |R|\ge2 R2

  1. 有单位元

  2. 非零元有逆元

    反证法:若除环中有零因子

    ab=0且a,b均不为0,左乘 a − 1 a^{-1} a1 b = 0 b=0 b=0,矛盾

称它为除环

如果一个除环又是可交换的,称它为

容易验证Q,C,R都是域,分别称为有理数域、实数域和复数域

小结

style="zoom:67%;" />

第14章习题一

习题14.2 下述系统是环吗

(1) n阶方阵关于矩阵的加法和乘法

(2) 区间[-1,1]上所有实连续函数,关于函数的加法和乘法

(3) [ Z ; + , ⋅ ] [Z;+,\cdot] [Z;+,]其中加为整数加法,乘定义为 a ⋅ b = 0 a\cdot b=0 ab=0

(4) R上所有连续函数的全体,关于函数加法和函数复合

(5) [ R ; + , ⋅ ] [R;+,\cdot] [R;+,],+为实数加法,乘定义为 a ⋅ b = ∣ a ∣ b a\cdot b=|a|b ab=ab

(1)

关于矩阵加法是交换群,关于矩阵乘法有结合律是半群,满足分配律,是环

(2)

f(x)=0是单位元,逆元-f(x),函数加法可交换可结合

函数乘法可结合,关于函数加法可分配,f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)

(3)

整数加法满足是交换群

乘法满足结合律,是半群

a ( b + c ) = a b + a c = 0 a(b+c)=ab+ac=0 a(b+c)=ab+ac=0

(4)

不满足分配律

反例: f ( x ) = x 2 , g ( x ) = h ( x ) = 2 x , f ( g ( x ) + h ( x ) ) = 16 x 2 ≠ 8 x 2 f(x)=x^2,g(x)=h(x)=2x,f(g(x)+h(x))=16x^2\neq8x^2 f(x)=x2,g(x)=h(x)=2x,f(g(x)+h(x))=16x2=8x2

(5)

不满足左侧分配律, ( b + c ) a = ∣ b + c ∣ a ≠ ∣ b ∣ a + ∣ c ∣ a (b+c)a=|b+c|a\neq|b|a+|c|a (b+c)a=b+ca=ba+ca

习题14.3 下面系统中哪些是整环、除环、域

(1) [ { a + b i ∣ a , b ∈ Q } ; + , ⋅ ] [\{a+bi|a,b\in Q\};+,\cdot] [{a+bia,bQ};+,]

(2) [ Z 2 × Z 2 ; + , ⋅ ] [Z_2\times Z_2;+,\cdot] [Z2×Z2;+,]​,其中加乘定义为对个分量运算

(3) [ Z × R ; + , ⋅ ] [Z\times R;+,\cdot] [Z×R;+,],其中加乘都是对分量分别运算

(4) [ { a + b i ∣ a , b ∈ Z } ; + , ⋅ ] [\{a+bi|a,b\in Z\};+,\cdot] [{a+bia,bZ};+,]

(5) [ F [ x ] ; + , ⋅ ] [F[x];+,\cdot] [F[x];+,],为多项式环

(1)域

关于加法满足交换群,关于乘法满足结合律,加乘满足分配律,乘法满足交换律

满足非零元有逆, ( a a 2 + b 2 − b a 2 + b 2 i ) (\frac a{a^2+b^2}-\frac b{a^2+b^2}i) (a2+b2aa2+b2bi)

(2)非整环除环域

加法满足交换群性质,乘法满足结合律,加乘可分配

有零因子 [ 0 0 1 1 ] × [ 1 1 0 0 ] \left[\begin{matrix}0&0\\1&1\end{matrix}\right]\times\left[\begin{matrix}1&1\\0&0\end{matrix}\right] [0101]×[1010]

(3)非整环除环域

加乘均满足交换群的性质,满足分配律

有零因子(0,1)·(1,0)=(0,0)

有单位元(1,1),对左侧的整数集不满足非0元有逆

(4)整环

不满足非零元有逆,但满足无零因子(c,d=0)

(5)整环扩张到多项式环

加满足交换群,加乘满足分配律,乘法交换性与F一致

当F无零因子,多项式环是无零因子的

存在单位元是1,不满足非零元有逆(最高项无法消除)

当F是整环,则是整环;当F是域,则是域

习题14.4 在环中找出零因子

(1) [ Z 6 ; ⊕ , ⊗ ] [Z_6;\oplus,\otimes] [Z6;,]

(2) [ Z 2 × Z 2 ; + , ⋅ ] [Z_2\times Z_2;+,\cdot] [Z2×Z2;+,]

(3) [ M 2 , 2 ( Z 3 ) ; + , ⋅ ] [M_{2,2}(Z_3);+,\cdot] [M2,2(Z3);+,]

(1)

[ 2 ] ⊗ [ 3 ] = [ 0 ] [2]\otimes [3]=[0] [2][3]=[0]

[ 3 ] ⊗ [ 4 ] = [ 0 ] [3]\otimes[4]=[0] [3][4]=[0]

(2)

(1,0)(0,1)=(0,0)

(3)

image-20240422095330377

习题14.7 证明环的直积也是环

加法满足交换群,乘法满足半群,加乘满足分配律

14.2 子环和环同态

定义 14.6(子环)

[ R ; + , ⋅ ] [R;+,\cdot] [R;+,]为环, S ⊆ R , S ≠ ∅ S\subseteq R,S\neq\varnothing SR,S=,当 [ S ; + , ⋅ ] [S;+,\cdot] [S;+,]是环时,称它为 R R R子环

特别地,在 S = R S=R S=R S = { 0 } S=\{0\} S={0}时称它为 R R R的平凡子环,当S时R的真子集时称S为R的真子环

定理 14.3(子环的等价定义)

R为环, S ≠ ∅ , S ⊆ R S\neq\varnothing ,S\subseteq R S=,SR,S是R的子环,当且仅当 ∀ a , b ∈ S \forall a,b\in S a,bS

  1. a + b ∈ S a+b\in S a+bS
  2. − a ∈ S -a\in S aS
  3. a ⋅ b ∈ S a\cdot b \in S abS

证明:

必要性:显然成立

充分性:

  1. 由1.2.分别满足1.封闭性2.有逆元的条件,所以S是R的子群,即Abel群
  2. 由3.知S关于乘法"·"封闭,则S为半群
  3. S ⊆ R S\subseteq R SR,乘法关于加法同样满足分配律

定义 14.7(环的中心)

环的中心是指所有与 R R R​ 中的任意元在乘法下可交换的那些元素全体,即
C = { x ∣ x ∈ R , ∀ a ∈ R , a x = x a } C=\{x|x\in R,\forall a\in R,ax=xa\} C={xxR,aR,ax=xa}

定理 14.4:环的中心 C C C是它的子环

证明:由定理14.3

任取 x , y ∈ C x,y\in C x,yC​​,有

a ( x + y ) = a x + a y = x a + y a = ( x + y ) a a(x+y)=ax+ay=xa+ya=(x+y)a a(x+y)=ax+ay=xa+ya=(x+y)a

∴ x + y ∈ C \therefore x+y\in C x+yC

a ( − x ) = − a x = − ( x a ) = ( − x ) a (定理   14.1 ) a(-x)=-ax=-(xa)=(-x)a(定理\ \ 14.1) a(x)=ax=(xa)=(x)a(定理  14.1)

∴ − x ∈ C \therefore-x\in C xC

a ( x y ) = ( a x ) y = ( x a ) y = x ( a y ) = ( x y ) a a(xy)=(ax)y=(xa)y=x(ay)=(xy)a a(xy)=(ax)y=(xa)y=x(ay)=(xy)a

∴ x y ∈ C \therefore xy\in C xyC

例 14.7 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,]是由单位元环,e为其单位元,作R的子集合 E = { n e ∣ n ∈ Z } E=\{ne|n\in Z\} E={nenZ},证明E为R的一个子环

证明:

  1. 首先证明 [ E ; + ] [E;+] [E;+]是循环群, E = ( e ) E=(e) E=(e)。由条件知 k e , h e ∈ E ke,he\in E ke,heE k e + h e = ( k + h ) e ∈ E ke+he=(k+h)e\in E ke+he=(k+h)eE,且 k e ∈ E ke\in E keE − k e ∈ E -ke\in E keE,所以 [ E ; + ] [E;+] [E;+] [ R ; + ] [R;+] [R;+]​​的子群(封闭性和有逆元);<?>且E是e生成的,所以为循环子群
  2. 分类讨论 k e ⋅ h e ke\cdot he kehe
    1. k , h > 0 , k e ⋅ h e = k h ⋅ e ⋅ e = ( k h ) e ∈ E ⊆ R k,h>0,ke\cdot he=kh\cdot e\cdot e=(kh)e\in E\subseteq R k,h>0,kehe=khee=(kh)eER
    2. k > 0 , h < 0 , ( k e ) ( h e ) = ( k e ) ( ∣ h ∣ ( − e ) ) = k ∣ h ∣ ( − e ) = ( k h ) e ∈ E k>0,h<0,(ke)(he)=(ke)(|h|(-e))=k|h|(-e)=(kh)e\in E k>0,h<0,(ke)(he)=(ke)(h(e))=kh(e)=(kh)eE
    3. k < 0 , h > 0 k<0,h>0 k<0,h>0,类似2.
    4. k = 0 , h = 0 , ( k e ) ( h e ) = 0 ∈ E k=0,h=0,(ke)(he)=0\in E k=0,h=0,(ke)(he)=0E

综上,E是R的子环

定义14.8(环的特征数)

R为有单位元环,e为其单位元,则 E = { n e ∣ n ∈ Z } E=\{ne|n\in Z\} E={nenZ}为R的单位子环

∣ E ∣ < + ∞ |E|<+\infin E<+,必有 m , n ∈ Z , m ≠ n , s t . m e = n e , ( m − n ) e = 0 m,n\in Z,m\neq n,st.me=ne,(m-n)e=0 m,nZ,m=n,st.me=ne,(mn)e=0​(否则E是无限集)

使 k e = 0 ke=0 ke=0​​ 最小的正整数称为环R的特征数,以char R表示R的特征数

环的特征数是元素的阶

定理 14.5(特征数的性质)

设p为有单位元环R的特征数,则

  1. 对任何 a ≠ 0   ,   p a = 0 a\neq0\ ,\ pa=0 a=0 , pa=0​;而且,当R是整环时,p也是使 p a = 0 pa=0 pa=0对任何 a ≠ 0 a\neq0 a=0都成立的最小非0正整数
  2. 当R为整环时,其特征数不是素数就是0

证明:

  1. p a = p ( e a ) = ( p e ) a = 0 ⋅ a = 0 pa=p(ea)=(pe)a=0\cdot a=0 pa=p(ea)=(pe)a=0a=0
  2. 反证,若R的特征数为合数 p = p 1 p 2 , p 1 ≠ 1 且 p 2 ≠ 1 p=p_1p_2,p_1\neq1且p_2\neq1 p=p1p2,p1=1p2=1,则由1.

p a = ( p 1 p 2 ) a = ( p 1 a ) ( p 2 e ) = 0 pa=(p_1p_2)a=(p_1a)(p_2e)=0 pa=(p1p2)a=(p1a)(p2e)=0

因为R是整环,无零因子,由上式 p 1 a = 0 或 p 2 e = 0 p_1a=0或p_2e=0 p1a=0p2e=0,与p为特征数矛盾

所以整环的特征数不是素数就是0

定义 14.9(环同态)

已知环 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,]和环 [ R ′ ; ∘ , ∗ ] [R';\circ,*] [R;,],若存在映射 ϕ : R → R ′ \phi:R\rightarrow R' ϕ:RR,对任意 r 1 , r 2 ∈ R 有 r_1,r_2\in R有 r1,r2R
{ ϕ ( r 1 + r 2 ) = ϕ ( r 1 ) ∘ ϕ ( r 2 ) ϕ ( r 1 r 2 ) = ϕ ( r 1 ) ∗ ϕ ( r 2 ) \begin{cases} \phi(r_1+r_2)=\phi(r_1)\circ\phi(r_2)\\ \phi(r_1r_2)=\phi(r_1)*\phi(r_2) \end{cases} {ϕ(r1+r2)=ϕ(r1)ϕ(r2)ϕ(r1r2)=ϕ(r1)ϕ(r2)
则称 ϕ \phi ϕ为R到R‘的同态映射;当满射称环同态;当 ϕ \phi ϕ为一一对应称环同构

R ′ ⊆ R R'\subseteq R RR时,称R到R‘的同态为自同态,同构为自同构

定理 14.6(关于同态映射 ϕ \phi ϕ

设环 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,]和环 [ R ′ ; ∘ , ∗ ] [R';\circ,*] [R;,]有同态映射 ϕ \phi ϕ,则 ϕ ( R ) ≠ ∅ \phi(R)\neq\varnothing ϕ(R)=

  1. ϕ ( 0 ) = 0 ′ \phi(0)=0' ϕ(0)=0,0为R加法之单位元,0’为R‘加法之单位元
  2. 如果R和R‘均为有单位元环,当 ϕ \phi ϕ是满射或 R‘为无零因子环且 ϕ \phi ϕ不是零同态(所有元素映射到零元),则 ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e
  3. ϕ ( R ) ⊆ R ′ \phi(R)\subseteq R' ϕ(R)R必为R‘的子环

证明留作习题:

  1. ϕ ( 0 + 0 ) = ϕ ( 0 ) ∘ ϕ ( 0 ) ,   ∴ ϕ ( 0 ) = 0 ′ \phi(0+0)=\phi(0)\circ\phi(0),\ \therefore\phi(0)=0' ϕ(0+0)=ϕ(0)ϕ(0), ϕ(0)=0
  2. ϕ ( e ⋅ e ) = ϕ ( e ) ∗ ϕ ( e ) \phi(e\cdot e)=\phi(e)*\phi(e) ϕ(ee)=ϕ(e)ϕ(e)
    1. i f    ϕ ( e ) = 0 , t h u s    ϕ ( r ) = ϕ ( e ⋅ r ) = ϕ ( e ) ∗ ϕ ( r ) = 0 if\ \ \phi(e)=0,thus\ \ \phi(r)=\phi(e\cdot r)=\phi(e)*\phi(r)=0 if  ϕ(e)=0thus  ϕ(r)=ϕ(er)=ϕ(e)ϕ(r)=0,则 ϕ \phi ϕ是零同态;所以 ϕ \phi ϕ不是零同态要求 ϕ ( e ) ≠ 0 \phi(e)\neq0 ϕ(e)=0
    2. 猜想:当 ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e则自然满射,原因尚未可知<?>
  3. ϕ ( R ) ⊆ R ′ \phi(R)\subseteq R' ϕ(R)R必为R‘的子环,由定理14.3
    1. ϕ ( r 1 ) ∘ ϕ ( r 2 ) = ϕ ( r 1 + r 2 ) ∈ R ′ \phi(r_1)\circ\phi(r_2)=\phi(r_1+r_2)\in R' ϕ(r1)ϕ(r2)=ϕ(r1+r2)R
    2. ϕ ( r 1 ) ∘ ϕ ( r 1 ) − 1 = 0 ′ = ϕ ( 0 ) = ϕ ( r 1 − r 1 ) = ϕ ( r 1 ) ∘ ϕ ( − r 1 ) \phi(r_1)\circ\phi(r_1)^{-1}=0'=\phi(0)=\phi(r_1-r_1)=\phi(r_1)\circ\phi(-r_1) ϕ(r1)ϕ(r1)1=0=ϕ(0)=ϕ(r1r1)=ϕ(r1)ϕ(r1),则 ϕ ( r 1 ) − 1 = ϕ ( − r 1 ) ∈ R ′ \phi(r_1)^{-1}=\phi(-r_1)\in R' ϕ(r1)1=ϕ(r1)R
    3. ϕ ( r 1 ) ∗ ϕ ( r 2 ) = ϕ ( r 1 r 2 ) ∈ R ′ \phi(r_1)*\phi(r_2)=\phi(r_1r_2)\in R' ϕ(r1)ϕ(r2)=ϕ(r1r2)R

推论 14.1 :若两个环R与R‘同构, R ≅ R ′ R\cong R' RR,则R为整环时,R‘也为整环;R为除环时,R’也为除环。

定理 14.7

设有整环R, c h a r R = p ( p ≠ 0 ) char R=p(p\neq0) charR=p(p=0),作映射

ϕ : R → R , ∀ a ∈ R , ϕ ( a ) = a p  是 R 的一个自同态映射且  i f   a ≠ b , ϕ ( a ) ≠ ϕ ( b ) \phi:R\rightarrow R,\forall a\in R,\phi(a)=a^p\ 是 R 的一个自同态映射且\ if\ a\neq b,\phi(a)\neq\phi(b) ϕ:RR,aR,ϕ(a)=ap R的一个自同态映射且 if a=b,ϕ(a)=ϕ(b)(内射)

证明:

  1. 证明为同态映射

在一个交换环中,二项式定理成立,即对任意的 a , b ∈ R , n ∈ N a,b\in R,n\in N a,bR,nN
( a + b ) n = ∑ i = 0 n ( n i ) a n − i b i , w h e r e   ( n i ) = n ! i ! ( n − i ) ! (a+b)^n=\sum_{i=0}^{n}\left(\begin{matrix}n\\i\end{matrix}\right)a^{n-i}b^{i},where\ \left(\begin{matrix}n\\i\end{matrix}\right)=\frac{n!}{i!(n-i)!} (a+b)n=i=0n(ni)anibi,where (ni)=i!(ni)!n!
当上式n=p时,易知p是素数(定理14.5),则除(p,0)=(p,p)=1外,其余各项系数均有因子p,故
( a + b ) p = a p + b p ( a − b ) p = a p − b p ( a b ) p = a p b p (a+b)^{p}=a^p+b^p\\ (a-b)^{p}=a^p-b^p\\ (ab)^{p}=a^pb^p (a+b)p=ap+bp(ab)p=apbp(ab)p=apbp
$so\ \ \phi\ \ is\ \ a\ \ $automorphic mapping   f r o m    R → R ′ \ from\ \ R\to R'  from  RR

  1. 证明内射( ϕ ( a ) = ϕ ( b ) → a = b \phi(a)=\phi(b)\to a=b ϕ(a)=ϕ(b)a=b

内射,即 i f    a ≠ b , t h u s    ϕ ( a ) ≠ ϕ ( b ) if\ \ a\neq b,thus\ \ \phi(a)\neq\phi(b) if  a=b,thus  ϕ(a)=ϕ(b)反证法

假如

ϕ ( a ) = ϕ ( b ) , t h a t    i s    ϕ ( a ) − ϕ ( b ) = 0 , t h e n    a p − b p = 0 , t h a t    i s    ( a − b ) p = 0 \phi(a)=\phi(b),that\ \ is\ \ \phi(a)-\phi(b)=0,then\ \ a^p-b^p=0,that\ \ is\ \ (a-b)^p=0 ϕ(a)=ϕ(b)that  is  ϕ(a)ϕ(b)=0,then  apbp=0,that  is  (ab)p=0

因为整环无零因子,所以推出a-b=0,即a=b

第14章习题二

习题14.12 证明是子环

a + b ∈ R , − a ∈ R , a ⋅ b ∈ R a+b\in R,-a\in R,a\cdot b\in R a+bR,aR,abR

习题14.13 已知A,B为R的子环,证明 A ∩ B A\cap B AB​是R的子环

A ∩ B A\cap B AB中的元素一定有逆元

A,B中的元素都满足封闭性

习题14.15 2 Z = { 2 k ∣ k ∈ Z } 2Z=\{2k|k\in Z\} 2Z={2kkZ}

(1)

ϕ ( z ) = 2 z \phi(z)=2z ϕ(z)=2z

(2)

2 = ϕ ( 1 ) = ϕ ( 1 ⋅ 1 ) ≠ ϕ ( 1 ) ⋅ ϕ ( 1 ) = 4 2=\phi(1)=\phi(1\cdot 1)\neq\phi(1)\cdot\phi(1)=4 2=ϕ(1)=ϕ(11)=ϕ(1)ϕ(1)=4

因此不存在这样的映射

习题14.16 [ F ; + , ⋅ ] [F;+,\cdot] [F;+,]为域, F ∗ = F − { 0 } F^*=F-\{0\} F=F{0},则 [ F ; + ] [F;+] [F;+]不同构于 [ F ∗ ; ⋅ ] [F^*;\cdot] [F;]

定理14.6 ϕ ( 1 ) = 0 \phi(1)=0 ϕ(1)=0

ϕ ( 1 / 2 ) 2 = ϕ ( 1 / 2 + 1 / 2 ) = ϕ ( 1 ) = 0 \phi(1/2)^2=\phi(1/2+1/2)=\phi(1)=0 ϕ(1/2)2=ϕ(1/2+1/2)=ϕ(1)=0

所以 ϕ ( 1 / 2 ) = 0 \phi(1/2)=0 ϕ(1/2)=0,矛盾

习题14.20 分别在模3和模5的同余类环 [ R ; + , ⋅ ] [R;+,\cdot] [R;+,]上解下述方程组

image-20240425190951541

14.3 多项式环

定义(域上的多项式环)

根据习题14.3(5)可知定义在F上的多项式(Z不是域)
F [ x ] = { ∑ i = 0 n a i x i ∣ i = 0 , … , n , a i ∈ F } F[x]=\{\sum_{i=0}^{n}a_ix^i|i=0,\dots,n,a_i\in F\} F[x]={i=0naixii=0,,n,aiF}
关于多项式的乘法和加法构成整环,且称F[x]为域上的多项式环

本节中将证明有关整环[Z;+,·]的许多性质可以推广到多项式环中。

为此引进记号 d e g   f ( x ) deg\ f(x) deg f(x),表示 F [ x ] ( ≠ 0 ) F[x](\neq0) F[x](=0)中的多项式 f ( x ) f(x) f(x)次数

定理 14.8:对f(x)和g(x),有q(x)类似商,r(x)类似余数
f ( x ) = g ( x ) q ( x ) + r ( x ) f(x)=g(x)q(x)+r(x) f(x)=g(x)q(x)+r(x)
其中 d e g   r ( x ) < d e g   g ( x ) deg\ r(x)<deg\ g(x) deg r(x)<deg g(x) r ( x ) = 0 r(x)=0 r(x)=0

推论 14.2:f(x) 被 (x-a) 除留的余式为 f(a)

证明:
f ( x ) = ( x − a ) q ( x ) + r ( x ) f ( a ) = r ( x ) f(x)=(x-a)q(x)+r(x)\\f(a)=r(x) f(x)=(xa)q(x)+r(x)f(a)=r(x)

推论 14.3:(x-a)|f(x) 当且仅当f(a)=0

定义14.10(最大公因子)

h ( x ) 整除 f ( x ) 和 g ( x ) ;当 c ( x ) ∣ f ( x ) 且 c ( x ) ∣ g ( x ) 时,一定有 c ( x ) ∣ h ( x ) h(x)整除f(x)和g(x);当c(x)|f(x)且c(x)|g(x)时,一定有c(x)|h(x) h(x)整除f(x)g(x);当c(x)f(x)c(x)g(x)时,一定有c(x)h(x)

则称 h ( x ) h(x) h(x)是最大公因子, h ( x ) = G C D ( f ( x ) , g ( x ) ) h(x)=GCD(f(x),g(x)) h(x)=GCD(f(x),g(x))

定理14.9

  1. GCD(f,g)可由类似12.3节的长除法求得
  2. 当h(x)=GCD(f,g),必存在h(x)=s(x)f(x)+t(x)g(x)(左右式相抵)

由F[x]的定义,F是域,域中的每个元都有逆元,

而对 d e g f ( x ) > 1 deg f(x)>1 degf(x)>1时,不存在 f ( x ) g ( x ) = 1 f(x)g(x)=1 f(x)g(x)=1​(最高次项不为0)

例14.9 Z 3 [ x ] Z_3[x] Z3[x] a ( x ) = 2 x 4 + 2 , b ( x ) = x 5 + 2 a(x)=2x^4+2,b(x)=x^5+2 a(x)=2x4+2,b(x)=x5+2,求GCD(a(x),b(x))以及 g ( x ) = s ( x ) a ( x ) + t ( x ) b ( x ) g(x)=s(x)a(x)+t(x)b(x) g(x)=s(x)a(x)+t(x)b(x)

解:

(1)由长除法

x 5 + 2 = ( 2 x 4 + 2 ) ( 2 x ) + ( 2 + 2 x ) x^5+2=(2x^4+2)(2x)+(2+2x) x5+2=(2x4+2)(2x)+(2+2x)

2 x 4 + 2 = ( 2 x + 2 ) ( x 3 + 2 x 2 + x + 2 ) + 1 2x^4+2=(2x+2)(x^3+2x^2+x+2)+1 2x4+2=(2x+2)(x3+2x2+x+2)+1

gcd(x)=1

(2)

将(1)中的式子互相代入

2 x 4 + 2 = ( x 5 + 2 − ( 2 x 4 + 2 ) 2 x ) ( x 3 + 2 x 2 + x + 2 ) + 1 2x^4+2=(x^5+2-(2x^4+2)2x)(x^3+2x^2+x+2)+1 2x4+2=(x5+2(2x4+2)2x)(x3+2x2+x+2)+1

( 2 x 4 + 2 ) ( 1 + 2 x ) ( x 3 + 2 x 2 + x + 2 ) − ( x 5 + 2 ) ( x 3 + 2 x 2 + x + 2 ) = 1 (2x^4+2)(1+2x)(x^3+2x^2+x+2)-(x^5+2)(x^3+2x^2+x+2)=1 (2x4+2)(1+2x)(x3+2x2+x+2)(x5+2)(x3+2x2+x+2)=1

综上 s ( x ) = 2 x 3 + x 2 + 2 x + 1 , t ( x ) = 2 x 4 + x 3 + 2 x 2 + x + 1 s(x)=2x^3+x^2+2x+1,t(x)=2x^4+x^3+2x^2+x+1 s(x)=2x3+x2+2x+1,t(x)=2x4+x3+2x2+x+1

定义 14.11(可逆元)

当存在 a − 1 ∈ F [ x ] a^{-1}\in F[x] a1F[x],使得 a a − 1 = 1 aa^{-1}=1 aa1=1​时,称 a a a F [ x ] F[x] F[x]中的可逆元,否则称不可逆元(一定为常数项)

定义 14.12(可约多项式)

如果存在 f ( x ) = h ( x ) t ( x ) f(x)=h(x)t(x) f(x)=h(x)t(x),称f(x)可约多项式(deg h,t>1)

如若 d e g   h ( x ) = 0 deg\ h(x)=0 deg h(x)=0,此时 h ( x ) ∈ F ∗ h(x)\in F^* h(x)F为可逆元,则f(x)为不可约多项式

定理14.10 f ( x ) ∣ g ( x ) 且 g ( x ) ∣ f ( x ) f(x)|g(x)且g(x)|f(x) f(x)g(x)g(x)f(x),当且仅当 f ( x ) = a g ( x ) , a ∈ F ∗ f(x)=ag(x),a\in F^* f(x)=ag(x),aF

证明:

必要性: f ( x ) = g ( x ) g ‾ ( x ) = f ( x ) f ‾ ( x ) g ‾ ( x ) f(x)=g(x)\overline g(x)=f(x)\overline f(x)\overline g(x) f(x)=g(x)g(x)=f(x)f(x)g(x),可逆 f ‾ ( x ) , g ‾ ( x ) ∈ F ∗ \overline f(x),\overline g(x)\in F^* f(x),g(x)F

充分性:易得

定理 14.11: g 1 = G C D ( f ( x ) , g ( x ) ) , g 2 = G C D ( f ( x ) , g ( x ) ) g_1=GCD(f(x),g(x)),g_2=GCD(f(x),g(x)) g1=GCD(f(x),g(x)),g2=GCD(f(x),g(x)),当且仅当 g 1 ( x ) = a g 2 ( x ) g_1(x)=ag_2(x) g1(x)=ag2(x)

证明:
必要性:由最大公因子的定义有, g 1 ∣ g 2 且 g 2 ∣ g 1 g_1|g_2且g_2|g_1 g1g2g2g1,再由定理14.10

引理14.1: f ( x ) ∣ g ( x ) h ( x ) 且 G C D ( f ( x ) , g ( x ) ) = a 时 f(x)|g(x)h(x)且GCD(f(x),g(x))=a时 f(x)g(x)h(x)GCD(f(x),g(x))=a,有 f ( x ) ∣ h ( x ) f(x)|h(x) f(x)h(x)

==引理14.2:p(x)为不可约多项式, f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)F[x],若 p ( x ) ∣ f ( x ) g ( x ) p(x)|f(x)g(x) p(x)f(x)g(x),则 p ( x ) ∣ f ( x ) p(x)|f(x) p(x)f(x) p ( x ) ∣ g ( x ) p(x)|g(x) p(x)g(x)==​

证明:

p ( x ) = h ( x ) G C D ( p ( x ) , f ( x ) ) p(x)=h(x)GCD(p(x),f(x)) p(x)=h(x)GCD(p(x),f(x))​,注:是p(x)不是g(x)

因为p(x)不可约,所以必有其一为常数项

  1. h ( x ) ∈ F ∗ ,则 p ( x ) ∣ G C D ( p , f ) h(x)\in F^*,则p(x)|GCD(p,f) h(x)F,则p(x)GCD(p,f),有 p ( x ) ∣ f ( x ) p(x)|f(x) p(x)f(x)
  2. G C D ( p , f ) ∈ F ∗ GCD(p,f)\in F^* GCD(p,f)F,由引理14.2知 p ( x ) ∣ g ( x ) p(x)|g(x) p(x)g(x)

定理14.12(唯一因式分解定理)

多项式环 F [ x ] F[x] F[x]中的元素,或属于 F F F或可分解为有限个不可约多项式之积,且分解是唯一的(注:系数可以成比例)

唯一: q i ( x ) = a i p ( x ) q_i(x)=a_ip_(x) qi(x)=aip(x)

证明:

  1. 首先证明可分解性,对 deg f(x)=k 作归纳,deg f(x)=k时,分为可约和不可约两种情况

  2. 唯一性:由假设 f ( x ) = p 1 ( x ) … p n ( x ) = q 1 ( x ) … q m ( x ) f(x)=p_1(x)\dots p_n(x)=q_1(x)\dots q_m(x) f(x)=p1(x)pn(x)=q1(x)qm(x),对n作归纳

    ​ 两边同除p1(x),由于是p1(x)不可约的,右边也可以除断

第14章习题三

习题14.22 [ Z 3 ; ⊕ , ⊗ ] [Z_3;\oplus,\otimes] [Z3;,] [ Q : + , ⋅ ] [Q:+,\cdot] [Q:+,],求下面多项式的最大公因子: f ( x ) = x 4 + 1 , g ( x ) = x 3 + x + 1 f(x)=x^4+1,g(x)=x^3+x+1 f(x)=x4+1,g(x)=x3+x+1

G C D ( a , b ) = { a , i f   b = 0 G C D ( a , a   m o d   b , i f   b > 0 ) GCD(a,b)=\begin{cases}a,if\ b=0\\GCD(a,a\ mod\ b,if\ b>0)\end{cases} GCD(a,b)={a,if b=0GCD(a,a mod b,if b>0)

解:运用多项式的辗转相除法

(1)
x 4 + 1 = ( x 3 + x + 1 ) x + ( 2 x 2 + 2 x + 1 ) x 3 + x + 1 = ( 2 x 2 + 2 x + 1 ) ( 2 x + 1 ) x^4+1=(x^3+x+1)x+(2x^2+2x+1)\\ x^3+x+1=(2x^2+2x+1)(2x+1) x4+1=(x3+x+1)x+(2x2+2x+1)x3+x+1=(2x2+2x+1)(2x+1)
所以公因子是 ( 2 x 2 + 2 x + 1 ) (2x^2+2x+1) (2x2+2x+1)

(2)
x 4 + 1 = ( x 3 + x + 1 ) x − x 2 − x + 1 x 3 + x + 1 = ( − x 2 − x + 1 ) ( − x + 1 ) + 2 x − x 2 − x + 1 = 2 x ( − 1 2 x − 1 2 ) + 1 2 x = 1 ( 2 x ) x^4+1=(x^3+x+1)x-x^2-x+1\\ x^3+x+1=(-x^2-x+1)(-x+1)+2x\\ -x^2-x+1=2x(-\frac12x-\frac12)+1\\ 2x=1(2x) x4+1=(x3+x+1)xx2x+1x3+x+1=(x2x+1)(x+1)+2xx2x+1=2x(21x21)+12x=1(2x)
所以公因子是1

习题14.23 在域 Z 3 Z_3 Z3上分解多项式 x 4 + x 3 + x + 2 x^4+x^3+x+2 x4+x3+x+2为不可约多项式的积

先试商,不存在一次项的因式

假设存在二次项因式 a 1 x 2 + b 1 x + c 1 a_1x^2+b_1x+c_1 a1x2+b1x+c1 a 2 x 2 + b 2 x + c 2 a_2x^2+b_2x+c_2 a2x2+b2x+c2

image-20240425194246145

14.4 理想与商环

定义14.13(理想)

  1. R为环,I为R的子集合

  2. a − b ∈ I a-b\in I abI

  3. ∀ r ∈ R , a r , r a ∈ I \forall r\in R,ar,ra\in I rR,ar,raI

理想是不是子环?

  1. 加法满足有逆元,封闭性,[I;+]是[R;+]的子群,也是Abel群
  2. 乘法满足封闭性,在R中则有可结合,是半群,理想不一定可交换
  3. 加乘满足分配律
  4. 理想中不一定有单位元

综上,理想是乘法满足交换律的子环,可类比正规子群

定义(生成子集合)

S是环R的子集,定义(S)

  1. a ∈ S , t h e n    a ∈ ( S ) a\in S,then\ \ a\in (S) aS,then  a(S)
  2. a , b ∈ S , t h e n    a − b ∈ ( S ) a,b\in S,then\ \ a-b\in (S) a,bS,then  ab(S)
  3. a ∈ S , r ∈ R , t h e n    a r , r a ∈ ( S ) a\in S,r\in R,then\ \ ar,ra\in (S) aS,rR,then  ar,ra(S)

称 (S) 是环 R 中由 S 生成的理想,特别地,当 S = { a } S=\{a\} S={a}时,S即由a生成的理想,记为 (a)

定义14.14(主理想)

由一个元素生成的理想称为该环的主理想,一个所有理想都是主理想的环是主理想环

例如:[Z;+,·]中, { k n ∣ n ∈ Z } \{kn|n\in Z\} {knnZ}是元素 k 生成的主理想

定理14.13:多项式环F[x]是主理想环

  1. 平凡理想,(0)={0},(1)=F[x]都是主理想

  2. 非平凡理想, p ( x ) ∈ I p(x)\in I p(x)I且p(x)的阶是 I 中最小的,根据定理14.8
    对任意 f ( x ) ∈ I , f ( x ) = p ( x ) q ( x ) + r ( x ) 对任意f(x)\in I,f(x)=p(x)q(x)+r(x) 对任意f(x)I,f(x)=p(x)q(x)+r(x)
    r ( x ) ≠ 0 r(x)\neq 0 r(x)=0 r ( x ) = f ( x ) − p ( x ) q ( x ) ∈ I r(x)=f(x)-p(x)q(x)\in I r(x)=f(x)p(x)q(x)I,而且 r(x) 的阶更小,矛盾,所以r(x)=0

定义(商集合)

由理想的定义知, [ I ; + ] [I;+] [I;+] [ R ; + ] [R;+] [R;+]的正规子群(加法满足交换律),作 I I I 的陪集如下
I + r = { i + r ∣ i ∈ I } , 显然  I + r = r + I I+r=\{i+r|i\in I\},显然\ I+r=r+I I+r={i+riI},显然 I+r=r+I
由正规子群的性质知下式是R的一个商集合
R / I = { I + r ∣ r ∈ R } R/I=\{I+r|r\in R\} R/I={I+rrR}

定义 ⊕ ⊗ \oplus\otimes

( I + r 1 ) ⊕ ( I + r 2 ) = I + ( r 1 + r 2 ) ( I + r 1 ) ⊗ ( I + r 2 ) = I + ( r 1 r 2 ) (I+r_1)\oplus(I+r_2)=I+(r_1+r_2)\\ (I+r_1)\otimes(I+r_2)=I+(r_1r_2) (I+r1)(I+r2)=I+(r1+r2)(I+r1)(I+r2)=I+(r1r2)

定理:如上定义的 [ R / I ; ⊕ , ⊗ ] [R/I;\oplus,\otimes] [R/I;,]​是环

证明: ⊕ ⊗ 满足分配律 \oplus \otimes满足分配律 满足分配律

定义14.15(商环)

[ R / I ; ⊕ , ⊗ ] [R/I;\oplus,\otimes] [R/I;,]​是环R关于理想 I 的商环,简记为 R / I 或 R-I

定义(多项式环的商环)*

( p ( x ) ) = { p ( x ) h ( x ) ∈ F [ x ] } (p(x))=\{p(x)h(x)\in F[x]\} (p(x))={p(x)h(x)F[x]}

对任意 g ( x ) ∈ F [ x ] g(x)\in F[x] g(x)F[x],存在 g ( x ) = p ( x ) q ( x ) + r ( x ) g(x)=p(x)q(x)+r(x) g(x)=p(x)q(x)+r(x)

设deg p(x)=n,可设 r ( x ) = a 0 + a 1 x + ⋯ + a n − 1 x n − 1 r(x)=a_0+a_1x+\dots+a_{n-1}x^{n-1} r(x)=a0+a1x++an1xn1,可取r(x)为g(x)所在陪集的代表元,使 g ( x ) ∈ F [ x ] / ( p ( x ) ) g(x)\in F[x]/(p(x)) g(x)F[x]/(p(x))
F [ x ] / ( p ( x ) ) = { ( p ( x ) ) + ∑ a i x i ∣ a i ∈ F , i = 0 , … , n − 1 } F[x]/(p(x))=\{(p(x))+\sum a_ix^i|a_i\in F,i=0,\dots,n-1\} F[x]/(p(x))={(p(x))+aixiaiF,i=0,,n1}
是F[x]关于(p(x))的商环

一个具体的例子:

取p(x)=x2+x+1

Z 2 [ x ] / ( p ( x ) ) = { ( p ( x ) ) , ( p ( x ) ) + 1 , ( p ( x ) ) + x , ( p ( x ) ) + x + 1 } Z_2[x]/(p(x))=\{(p(x)),(p(x))+1,(p(x))+x,(p(x))+x+1\} Z2[x]/(p(x))={(p(x)),(p(x))+1,(p(x))+x,(p(x))+x+1}

定义14.16(同态核)

K ( ϕ ) = { ϕ ( x ) = 0 ′ } , ϕ : R → S , K(\phi)=\{\phi(x)=0'\},\phi:R\to S, K(ϕ)={ϕ(x)=0},ϕ:RS,​ 0’是S中的加法单位元

定理14.15: K ( ϕ ) K(\phi) K(ϕ)​是R的理想

证明:

  1. 显然 0 ∈ K ( ϕ ) 0\in K(\phi) 0K(ϕ)(原因: ϕ ( 0 + x ) = ϕ ( 0 ) + ϕ ( x ) \phi(0+x)=\phi(0)+\phi(x) ϕ(0+x)=ϕ(0)+ϕ(x)​)
  2. ϕ ( x − y ) = ϕ ( x ) − ϕ ( y ) = 0 ′ \phi(x-y)=\phi(x)-\phi(y)=0' ϕ(xy)=ϕ(x)ϕ(y)=0
  3. ϕ ( x r ) = ϕ ( x ) ϕ ( r ) = 0 ′ \phi(xr)=\phi(x)\phi(r)=0' ϕ(xr)=ϕ(x)ϕ(r)=0

定理14.16(环同态基本定理)

如果两环R与S同态, ϕ \phi ϕ为其满同态映射,则 R / K e r ϕ ≅ S R/Ker\phi\cong S R/KerϕS

证明:作映射 ψ : R / K → S \psi:R/K\to S ψ:R/KS,使得对任意陪集 K+r 有
ψ ( K + r ) = ϕ ( r ) ∈ S , r ∈ R \psi(K+r)=\phi(r)\in S,r\in R ψ(K+r)=ϕ(r)S,rR
在此只证明 ψ \psi ψ 为同态映射
ψ ( ( K + r 1 ) ⊕ ( K + r 2 ) ) = ⋯ = ψ ( ( K + r 1 ) + ( K + r 2 ) ) ψ ( ( K + r 1 ) ⊗ ( K + r 2 ) ) = ⋯ = ψ ( ( K + r 1 ) ⋅ ( K + r 2 ) ) \psi((K+r_1)\oplus(K+r_2))=\dots=\psi((K+r_1)+(K+r_2))\\ \psi((K+r_1)\otimes(K+r_2))=\dots=\psi((K+r_1)\cdot(K+r_2)) ψ((K+r1)(K+r2))==ψ((K+r1)+(K+r2))ψ((K+r1)(K+r2))==ψ((K+r1)(K+r2))
类似群同态基本定理,得证

例14.14 证明 R [ x ] / ( x 2 + 1 ) ≅ C R[x]/(x^2+1)\cong C R[x]/(x2+1)C

(1)

R [ x ] / ( x 2 + 1 ) = { a + b x ∣ a , b ∈ R } R[x]/(x^2+1)=\{a+bx|a,b\in R\} R[x]/(x2+1)={a+bxa,bR}

φ : R [ x ] → C , φ ( a + b x ) = a + b i \varphi:R[x]\to C,\varphi(a+bx)=a+bi φ:R[x]C,φ(a+bx)=a+bi

容易验证是同构映射

(2)用环同态基本定理

φ : R [ x ] → C , φ ( f ( x ) ) = f ( i ) \varphi:R[x]\to C,\varphi(f(x))=f(i) φ:R[x]C,φ(f(x))=f(i),显然满射

K ( φ ) = { f ( x ) ∣ f ( i ) = 0 } = ( x 2 + 1 ) K(\varphi)=\{f(x)|f(i)=0\}=(x^2+1) K(φ)={f(x)f(i)=0}=(x2+1),该理想中均有因式x2+1

定理14.17* F[x]是多项式环,商环 F [ x ] / ( p ( x ) ) F[x]/(p(x)) F[x]/(p(x)) 是域,当且仅当 p ( x ) p(x) p(x) F [ x ] F[x] F[x]​ 上的不可约多项式(习题14.31)

推论14.4 Z p = Z / ( p ) Z_p=Z/(p) Zp=Z/(p)​ 为域当且仅当p是素数

证明:

与域中无零因子矛盾

例如:

Z 4 = { 0 , 1 , 2 , 3 } , 2 ∗ 2 = 0 Z_4=\{0,1,2,3\},2*2=0 Z4={0,1,2,3},22=0,则 2 是 Z 4 Z_4 Z4 中的零因子

定理14.18 R为单位元交换环,且 R ≠ 0 R\neq {0} R=0,则R为域当且仅当R只有平凡理想{0}与 R

证明:

  1. 必要性:对任意非{0}的理想 I I I a ∈ I , a a − 1 ∈ I a\in I,aa^{-1}\in I aI,aa1I,即单位元在理想中,所以所有元素均属于 I I I
  2. 充分性:对任意的(a), 1 ∈ ( a ) 1\in (a) 1(a),所以R中存在 b = a − 1 b=a^{-1} b=a1(非零元有逆包含无零因子)

对商群商环的形象理解

第14章习题四

习题14.27 判断下列集合是否是子环或者理想

(1) 整数集Z,在整系数多项式环Z[x]中

(2) 自然数集N,在整数环Z中

(3) 整系数多项式集合Z[x]在有理数域上的多项式环Q[x]中

(4) 常数项为偶数的多项式集合I[x]在整数多项式环Z[x]中

(5)*首项系数为偶数的多项式集合在整系数多项式环Z[x]中

(1)是子环

有加法乘法的封闭性,加法无零元有逆元

不满足 a r ∈ Z ar\in Z arZ,可举反例为1和x,x不属于Z

(2)不是子环

1无逆元

(3)是子环

有加法逆元,加法乘法均有封闭性

不满足 a r ∈ Z [ x ] ar\in Z[x] arZ[x]

(4)是理想

加乘均满足封闭性(0是偶数),有加法逆元

∀ g ( x ) ∈ Z [ x ] , f ( x ) ∈ I [ x ] \forall g(x)\in Z[x],f(x)\in I[x] g(x)Z[x],f(x)I[x],乘积的常数项也为偶数

(5)不是子环

2 x 2 + x 2x^2+x 2x2+x − 2 x 2 + 1 -2x^2+1 2x2+1​相加破坏加法封闭性

习题14.28 在Z[x]环中,令I为x和2生成的一个理想,证明

(1) I是所有带偶常数的所有多项式的集合

(2) I不是主理想

(3) 商环 Z [ x ] / I Z[x]/I Z[x]/I同构于 Z 2 Z_2 Z2

(1)

I是x和2生成的理想,因此I可以表示为
I = { x ⋅ f ( x ) + 2 ⋅ g ( x ) ∣ f ( x ) , g ( x ) ∈ Z [ x ] } I=\{x\cdot f(x)+2\cdot g(x)|f(x),g(x)\in Z[x]\} I={xf(x)+2g(x)f(x),g(x)Z[x]}

F = { x ⋅ f ( x ) + 2 k ∣ f ( x ) ∈ Z [ x ] , k ∈ Z } F=\{x\cdot f(x)+2k|f(x)\in Z[x],k\in Z\} F={xf(x)+2kf(x)Z[x],kZ}
显然 F ⊆ I F\subseteq I FI

∀ i ∈ I , i = x f ( x ) + 2 x g ′ ( x ) + 2 c , 其中 g ( x ) = x g ′ ( x ) + c \forall i\in I,i=xf(x)+2xg'(x)+2c,其中g(x)=xg'(x)+c iI,i=xf(x)+2xg(x)+2c,其中g(x)=xg(x)+c

(2)

要证明理想不是主理想,只需证其不能被一个元素生成

定理14.13的证明,多项式环理想的生成元是环中阶最小的,记为p(x)

显然在此理想中阶最小为0,可能的生成元是2,显然 I ≠ ( 2 ) I\neq(2) I=(2)

所以不是主理想

(3)

Z [ x ] / I = { I + r ∣ r ∈ R } = { { I } , { I + 1 } } Z[x]/I=\{I+r|r\in R\}=\{\{I\},\{I+1\}\} Z[x]/I={I+rrR}={{I},{I+1}}

或者利用环同态定理

构造同态映射
ϕ ( f ( x ) ) = { [ 0 ] , f ( x ) 常数项为偶数 [ 1 ] , f ( x ) 常数项为奇数 \phi(f(x))=\begin{cases} [0],f(x)常数项为偶数\\ [1],f(x)常数项为奇数 \end{cases} ϕ(f(x))={[0],f(x)常数项为偶数[1],f(x)常数项为奇数
显然 ϕ \phi ϕ​是一个同态映射且为满射

K e r ϕ = I Ker\phi=I Kerϕ=I

习题14.29 设R是环,a,b和ab-1是R中的可逆元,证明 a − b − 1 a-b^{-1} ab1 ( a − b − 1 ) − 1 − a − 1 (a-b^{-1})^{-1}-a^{-1} (ab1)1a1是可逆的

a − b − 1 = ( a b − 1 ) b − 1 a-b^{-1}=(ab-1)b^{-1} ab1=(ab1)b1,其逆元为 b ( a b − 1 ) − 1 b(ab-1)^{-1} b(ab1)1

( a − b − 1 ) − 1 − a − 1 = b ( a b − 1 ) − 1 − a − 1 = ( b − a − 1 ( a b − 1 ) ) ( a b − 1 ) − 1 = a − 1 ( a b − 1 ) − 1 \begin{aligned}(a-b^{-1})^{-1}-a^{-1}&=b(ab-1)^{-1}-a^{-1}\\&=(b-a^{-1}(ab-1))(ab-1)^{-1}\\&=a^{-1}(ab-1)^{-1}\end{aligned} (ab1)1a1=b(ab1)1a1=(ba1(ab1))(ab1)1=a1(ab1)1

其逆元为 ( a b − 1 ) a (ab-1)a (ab1)a

b ( a b − 1 ) − 1 − a − 1 ( ( a b − 1 ) a ) = b a − a − 1 ( a b − 1 ) a b(ab-1)^{-1}-a^{-1}((ab-1)a)=ba-a^{-1}(ab-1)a b(ab1)1a1((ab1)a)=baa1(ab1)a

习题14.31 证明 Z 2 [ x ] / ( x 2 + x + 1 ) Z_2[x]/(x^2+x+1) Z2[x]/(x2+x+1)是域,并写出它的加法和乘法运算表

Z 2 [ x ] / ( x 2 + x + 1 ) = { a + b x ∣ a , b ∈ Z 2 } Z_2[x]/(x^2+x+1)=\{a+bx|a,b\in Z_2\} Z2[x]/(x2+x+1)={a+bxa,bZ2}

可以设其中的元素为0,1,x,1+x

根据定理14.17,只需证明 x 2 + x + 1 x^2+x+1 x2+x+1是不可约多项式

显然它没有一次因式,因此不可约

image-20240425205518441

习题14.32 证明 Q [ x ] / ( x 2 − 2 ) Q[x]/(x^2-2) Q[x]/(x22)是域,写出其元素表达式,并求元素 ( x 2 − 2 ) + 3 x + 4 (x^2-2)+3x+4 (x22)+3x+4 ( x 2 − 2 ) + 5 x − 6 (x^2-2)+5x-6 (x22)+5x6的和与积,并求元素 ( x 2 − 2 ) + x + 1 (x^2-2)+x+1 (x22)+x+1之逆元

2 ∉ Q \sqrt2\not\in Q 2 Q,所以p(x)为不可约多项式,由定理14.17得证​

image-20240428195929441

Q ( x ) / ( x 2 − 2 ) = { a + b x ∣ a , b ∈ Q } Q(x)/(x^2-2)=\{a+bx|a,b\in Q\} Q(x)/(x22)={a+bxa,bQ}​,由定义14.15

和为(p(x))+8x-2,积为(p(x))+2x+6

((p(x))+x+1)((p(x))+a+bx)=(p(x))+1

解得:a=-1,b=1,即逆元是(p(x))+x-1

习题14.35 设R是环, R 1 R_1 R1是R的子环,I是R的理想,证明:

( R 1 + I ) / I ≅ R 1 / ( R 1 ∩ I ) (R_1+I)/I\cong R_1/(R_1\cap I) (R1+I)/IR1/(R1I),其中 R 1 + I = { a + b ∣ a ∈ R 1 , b ∈ I } R_1+I=\{a+b|a\in R_1,b\in I\} R1+I={a+baR1,bI}

证明:

( R 1 + I ) / I = R 1 / I = { I + r 1 ∣ r 1 ∈ R 1 } (R_1+I)/I=R_1/I=\{I+r_1|r_1\in R_1\} (R1+I)/I=R1/I={I+r1r1R1}

ϕ ( r 1 ) = I + r 1 : R 1 → ( R 1 + I ) / I \phi(r_1)=I+r_1:R_1\to (R_1+I)/I ϕ(r1)=I+r1:R1(R1+I)/I

显然满射、同态映射

x ∈ K e r ϕ , ϕ ( x ) = I + x = I x\in Ker\phi,\phi(x)=I+x=I xKerϕ,ϕ(x)=I+x=I

K e r ϕ ⊆ R 1 , K e r ϕ ⊆ I Ker\phi\subseteq R_1,Ker\phi\subseteq I KerϕR1,KerϕI,得证

习题14.36

(1) 证明:Z[x]上的理想 I = ( 3 , x 3 − x 2 + 2 x − 1 ) I=(3,x^3-x^2+2x-1) I=(3,x3x2+2x1)不是主理想

(2) Z [ x ] / I ≅ Z 3 [ x ] / ( x 3 − x 2 + 2 x − 1 ) Z[x]/I\cong Z_3[x]/(x^3-x^2+2x-1) Z[x]/IZ3[x]/(x3x2+2x1)

(3) 问:Z[x]/I是不是整环,说明理由

(1)

显然不是,不能由3生成。

由定理类比:多项式环中的理想都是其中次数最小的多项式生成的

(2)

Z 3 [ x ] / ( p ( x ) ) = { a x 2 + b x + c ∣ a , b , c = [ 0 ] , [ 1 ] , [ 2 ] } Z_3[x]/(p(x))=\{ax^2+bx+c|a,b,c=[0],[1],[2]\} Z3[x]/(p(x))={ax2+bx+ca,b,c=[0],[1],[2]}

ϕ ( f ( x ) ) = ϕ ( h ( x ) p ( x ) + 3 q ( x ) + a x 2 + b x + c ) = ( p ( x ) ) + a x 2 + b x + c \phi(f(x))=\phi(h(x)p(x)+3q(x)+ax^2+bx+c)=(p(x))+ax^2+bx+c ϕ(f(x))=ϕ(h(x)p(x)+3q(x)+ax2+bx+c)=(p(x))+ax2+bx+c

由f(x)的定义已知Ker\phi=I

(3)

(2)中右式中为不可约多项式,所以右式是域,所以是整环

第14章习题五

0 多项式关于模某不可约多项式的逆的计算

类似于例14.9

p ( x ) = x 8 + x 4 + x 3 + x + 1 p(x)=x^8+x^4+x^3+x+1 p(x)=x8+x4+x3+x+1​是不可约多项式

Z 2 [ x ] / ( p ( x ) ) Z_2[x]/(p(x)) Z2[x]/(p(x))是域

x 6 + x 4 + x 2 + x + 1 , x 7 + x + 1 ∈ Z 2 [ x ] / ( x 8 + x 4 + x 3 + x + 1 ) x^6+x^4+x^2+x+1,x^7+x+1\in Z_2[x]/(x^8+x^4+x^3+x+1) x6+x4+x2+x+1,x7+x+1Z2[x]/(x8+x4+x3+x+1)

( x 6 + x 4 + x 2 + x + 1 ) ⋅ ( x 7 + x + 1 ) m o d   p ( x ) = x 7 + x 6 + 1 (x^6+x^4+x^2+x+1)\cdot (x^7+x+1)mod\ p(x)=x^7+x^6+1 (x6+x4+x2+x+1)(x7+x+1)mod p(x)=x7+x6+1

其中 x 6 + x 4 + x 2 + x + 1 x^6+x^4+x^2+x+1 x6+x4+x2+x+1的逆元是 x 7 + x 5 + x 4 + x 3 + x 2 + x + 1 x^7+x^5+x^4+x^3+x^2+x+1 x7+x5+x4+x3+x2+x+1

方法:利用1=s(x)f(x)+t(x)g(x),实质是求s(x),利用辗转相除法

1 = s ( x ) ( x 6 + x 4 + x 2 + x + 1 ) + t ( x ) ( x 8 + x 4 + x 3 + x + 1 ) 1=s(x)(x^6+x^4+x^2+x+1)+t(x)(x^8+x^4+x^3+x+1) 1=s(x)(x6+x4+x2+x+1)+t(x)(x8+x4+x3+x+1)
$$
\begin{aligned}
&x8+x4+x3+x+1=(x2+1)(x6+x4+x2+x+1)+x4\
&x6+x4+x2+x+1=(x2+1)x4+x2+x+1\
&x4=(x2+x)(x^2+x+1)+x\
&x^2+x+1=(x+1)x+1\
&故\
&1=(x2+x+1)-(x+1)x\
&=(x2+x+1)-(x+1)(x4-(x2+x)(x2+x+1))\
&=(1+(x+1)(x2+x))(x2+x+1)+(x+1)x4\
&=(1+(x+1)(x2+x))((x6+x4+x2+x+1)-(x2+1)x4) +(x+1)x4\
&=(x3+x+1)(x6+x4+x2+x+1)+((x3+x+1)(x2+1) +(x+1))x4\
&=(x3+x+1)(x6+x4+x2+x+1)+(x5+x2)((x8+x4+x3+x+1)-(x2+1)(x6+x4+x2+x+1))\
&=((x3+x+1)+(x5+x2)(x2+1))(x6+x4+x2+x+1)+ (x5+x2)(x8+x4+x3+x+1)\
&=(x7+x5+x4+x3+x2+x+1)(x6+x4+x2+x+1)+ (x5+x2)(x8+x4+x3+x+1)\

\end{aligned}
$$
所以 x 6 + x 4 + x 2 + x + 1 x^6+x^4+x^2+x+1 x6+x4+x2+x+1关于模 x 8 + x 4 + x 3 + x + 1 x^8+x^4+x^3+x+1 x8+x4+x3+x+1的逆元是

x 7 + x 5 + x 4 + x 3 + x 2 + x + 1 x^7+x^5+x^4+x^3+x^2+x+1 x7+x5+x4+x3+x2+x+1

3 请计算 Z 2 [ x ] Z_2[x] Z2[x] x 7 + x + 1 x^7+x+1 x7+x+1模多项式 x 8 + x 4 + x 3 + x + 1 x^8+x^4+x^3+x+1 x8+x4+x3+x+1的逆

1 请举例说明**定理14.6(2)**中若同构映射 ϕ \phi ϕ不是满射,即使不是零同态,结论不成立

只有无零因子环有子环与环单位元相同

举反例,R’中有零因子,则上述定理成立

取A的子环B,C同构映射到B,C的单位元映射到B的单位元,但不一定是A的

2 请举例说明**定理14.6(2)**中若 ϕ \phi ϕ​不是满射,即使R’无零因子,结论不成立

举反例, ϕ \phi ϕ是零同态

4 设A,B是环R的两个理想,并且 B ⊆ A B\subseteq A BA,证明:

(1) A / B A/B A/B R / B R/B R/B的理想

(2) ( R / B ) / ( A / B ) ≅ R / A (R/B)/(A/B)\cong R/A (R/B)/(A/B)R/A

(1)证明是理想:两板斧

A / B = { B + a ∣ a ∈ A } A/B=\{B+a|a\in A\} A/B={B+aaA}

B + ( a + c ) ∈ A / B ⊆ R / B B+(a+c)\in A/B\subseteq R/B B+(a+c)A/BR/B

B + ( a r ) 中 a r ∈ A , ∴ B + a r ∈ A / B B+(ar)中ar\in A,\therefore B+ar\in A/B B+(ar)arA,B+arA/B

显然 A / B ∈ R / B = { B + r ∣ r ∈ R } A/B\in R/B=\{B+r|r\in R\} A/BR/B={B+rrR}

(2)证明同构,环同态定理或同阶

ϕ ( B + r ) = A + r \phi(B+r)=A+r ϕ(B+r)=A+r​,显然是同态映射且为满射

理解:理想是环中等间距

K e r ϕ = B + x , ϕ ( B + x ) = A + x = A Ker\phi=B+x,\phi(B+x)=A+x=A Kerϕ=B+x,ϕ(B+x)=A+x=A

x ∈ A , B + x ∈ A / B , K e r ϕ ⊆ A / B x\in A,B+x\in A/B,Ker\phi\subseteq A/B xA,B+xA/B,KerϕA/B

ϕ ( B + a ) = A + a = A ∈ K e r ϕ , A / B ⊆ K e r ϕ \phi(B+a)=A+a=A\in Ker\phi,A/B\subseteq Ker\phi ϕ(B+a)=A+a=AKerϕ,A/BKerϕ

由同态基本定理得到结论

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值