逆元及P3811 【模板】乘法逆元

逆元

在了解逆元前先看看同余的定义:
在数论中,同余是指两个数除以同一个正整数所得的余数相等。通常用符号≡表示同余关系。

具体地说,对于给定的整数a、b和正整数m,如果a和b除以m所得的余数相等,则称a与b在模m下同余,记作a ≡ b (mod m)。

换句话说,如果 (a mod m) = (b mod m),则称a与b在模m下同余。

逆元:对于一个整数a和模数m,能够找到一个整数x,使得ax除以m的余数为1。换句话说,如果存在整数x满足
a x ≡ 1 ( m o d   m ) ax ≡ 1 (mod\ m) ax1(mod m)
那么x就是a的乘法逆元。
对于x,可以记为 x = a − 1 x=a^{-1} x=a1

模运算

在模运算中,除法运算并不像我们在实数域中那样直接进行,需要借助逆元,比如求:
a b ( m o d    p ) \frac{a}{b} (\mod{p}) ba(modp)
可以求:
a ∗ b − 1 ( m o d    p ) a*b^{-1}(\mod p) ab1(modp)

求法

费马小定理

若 p 是一个质数, a 是任意整数,则有: a p ≡ a ( m o d p ) 若p是一个质数,a是任意整数,则有:a^p ≡ a (mod p) p是一个质数,a是任意整数,则有:apa(modp)
费马小定理可以用于求解逆元,具体步骤如下:

  1. 确定模数p和待求逆元的数a,确保a不是p的倍数。
  2. 根据费马小定理,计算 a p − 2 ( m o d   p ) a^{p-2} (mod\ p) ap2(mod p)
  3. 得到的结果即为a关于模p的逆元。

优点:好写,简单
缺点:不全面

欧拉定理

欧拉定理:
若 a 和 n 是互质的正整数,则有: a φ ( n ) ≡ 1 ( m o d   n ) 若a和n是互质的正整数,则有:a^{φ(n)} ≡ 1 (mod\ n) an是互质的正整数,则有:aφ(n)1(mod n)

注:欧拉函数通常用符号φ(n)表示,是指小于或等于正整数n且与n互质的正整数个数。
根据容斥原理,容易得出:

ϕ ( x ) = ∑ S ⊆ { p 1 , p 2 . . . . . , p m } ( − 1 ) ∣ S ∣ n ∏ p i ∈ S p i \phi(x)=\sum_{S\subseteq\{p_1,p_2.....,p_m\}}(-1)^{|S|}{n\over\prod_{p_i\in S}p_i} ϕ(x)=S{p1,p2.....,pm}(1)SpiSpin
可化为:
ϕ ( x ) = x ∗ ∏ i = 1 m ( 1 − 1 p i ) = n \phi(x)=x* \prod_{i=1}^{m} (1-{1 \over p_i})=n ϕ(x)=xi=1m(1pi1)=n
程序c++

int eulerPhi(int n) {
    int result = n;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            while (n % i == 0)n /= i;
            result = result / i*(i-1);
        }
    }
    if (n > 1) result = result / n *(n-1);
    return result;
}

题目

【模板】乘法逆元

题目背景

这是一道模板题

题目描述

给定 n , p n,p n,p 1 ∼ n 1\sim n 1n 中所有整数在模 p p p 意义下的乘法逆元。

这里 a a a p p p 的乘法逆元定义为 a x ≡ 1 ( m o d p ) ax\equiv1\pmod p ax1(modp) 的解。

输入格式

一行两个正整数 n , p n,p n,p

输出格式

输出 n n n 行,第 i i i 行表示 i i i 在模 p p p 下的乘法逆元。

样例 #1

样例输入 #1

10 13

样例输出 #1

1
7
9
10
8
11
2
5
3
4

提示

$ 1 \leq n \leq 3 \times 10 ^ 6, n < p < 20000528 $

输入保证 $ p $ 为质数。

#include <iostream>
#include <vector>
using namespace std;
const int M = 1e8;
int inv[M];

int main() {
    int n, p;scanf("%d %d",&n,&p);
    inv[1] = 1; puts("1");
    for (int i = 2; i <= n; i++) {
        inv[i] = 1ll*(p - p / i) * inv[p % i] % p;
        printf("%d\n", inv[i]);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值