【数据结构】二叉树基本概念及堆的实现


树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点
  • 除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、….Tm,其中每一个集合Ti(1<=i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

在这里插入图片描述

树的相关概念
在这里插入图片描述

  • 结点的度:一个结点含有的子树的个数称为该结点的度;如上图:A的为6
  • 叶结点或终端结点:度为0的结点称为叶结点;如上图:B、C、H、1…等结点为叶结点
  • 非终端结点或分支结点:度不为0的结点;如上图:D、E、F、G…等结点为分支结点
  • 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点;如上图:A是B的父结点
  • 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点;如上图:B是A的孩子结点
  • 兄弟结点:具有相同父结点的结点互称为兄弟结点;如上图:B、C是兄弟结点
  • 树的度:一棵树中,最大的结点的度称为树的度:如上图:树的度为6
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
  • 树的高度或深度:树中结点的最大层次:如上图:树的高度为4
  • 堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I为兄弟结点
  • 结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
  • 子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{
	struct Node* firstChild1; // 第一个孩子结点
	struct Node* pNextBrother; // 指向其下一个兄弟结点
	DataType data; // 结点中的数据域
}

在这里插入图片描述

二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:
1.或者为空
2.由一个根结点加上两棵别称为左子树和右子树的二又树组成

在这里插入图片描述

从上图可以看出:
1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,次序不能颠倒,因此二又树是有序树

注意:对于任意的二又树都是由以下几种情况复合而成的
在这里插入图片描述

特殊的二叉树

  • 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1,则它就是满二叉树。
  • 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对要注意的是满二叉树是一种特殊的完全二叉树。应时称之为完全二叉树。

二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2(i-1)个结点
  2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^h - 1.
  3. 对任何一棵二叉树,如果度为0其叶结点个数为 n0,度为2的分支结点个数为 n2,则有n0 = n2 +1

假设二叉树有N个结点
从总结点数角度考虑:N = n0 + n1 + n2 ①
从边的角度考虑,N个结点的任意二叉树,总共有N-1条边
因为二叉树中每个结点都有双亲,根结点没有双亲,每个节点向上与其双亲之间存在一条边
因此N个结点的二叉树总共有N-1条边
因为度为0的结点没有孩子,故度为0的结点不产生边; 度为1的结点只有一个孩子,故每个度为1的结点* * 产生一条边; 度为2的结点有2个孩子,故每个度为2的结点产生两条边,所以总边数为:n1 + 2 * n2
故从边的角度考虑:N - 1 = n1 + 2 * n2 ②
结合① 和 ②得:n0 + n1 + n2 = n1 + 2*n2 - 1
即:n0 = n2 + 1

  1. 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h=log2(n,+1).(ps:logz(n+ 1)是l0g以2为底,n+1为对数)
  2. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:
    • 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
    • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

二叉树的存储

二又树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  1. 顺序存储
    顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二又树。

  2. 链式存储
    二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二又链和三叉链,当前我们学习中一般都是二叉链,高阶数据结构如红黑树等会用到三叉链。

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
	struct BinTreeNode* left; // 指向当前结点左孩子
	struct BinTreeNode* right; // 指向当前结点右孩子
	BTDataType data; // 当前结点值域
}
// 三叉链
struct BinaryTreeNode
{
	struct BinTreeNode* parent; // 指向当前结点的双亲
	struct BinTreeNode* left; // 指向当前结点左孩子
	struct BinTreeNode* right; // 指向当前结点右孩子
	BTDataType data; // 当前结点值域
}

二叉树的实现(堆的实现)

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

在这里插入图片描述

堆的概念

  1. 堆在逻辑上是一颗完全二叉树(类似于一颗满二叉树只缺了右下角)
  2. 堆的实现利用的是数组,我们通常会利用动态数组来存放元素,这样可以快速拓容也不会很浪费空间,我们是将这颗完全二叉树用层序遍历的方式储存在数组里的
  3. 堆有两种分别是大根堆和小根堆
  • 堆中某个结点的值总是不大于或不小于其父结点的值
  • 堆总是一棵完全二叉树。

堆的实现

初始化及销毁

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。

typedef int HPDataType;

typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

void HPInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = php->capacity = 0;
}

void HPDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

向上调整和向下调整

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

改图以向下调整为例
在这里插入图片描述

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//向上调整
//上小下大
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

//向下调整
//上小下大
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (a[child] > a[child + 1] && child + 1 < n)
		{
			child++;
		}
		
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

往堆里添加元素

由于我们是利用数组来实现堆的,所以就需要在数组大小不够时扩容,并调整堆结构体的存储数量和存储空间大小等元素

void HPPush(HP* php, HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
		}
		php->a = tmp;
		php->capacity = newcapacity;
		
		AdjustUp(php->a, php->size - 1);
	}
	php->a[php->size++] = x;
}

堆其它功能实现

  • 删除栈顶
  • 获取栈顶元素
  • 判空
//删除栈顶
void HPPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

//获取堆顶元素
HPDataType HPTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return (php->a[0]);
}

//判断堆是否为空
bool HPEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

堆的应用 - 堆排序

  1. 首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端
  2. 将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1
  3. 将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,如此反复执行,便能得到有序数组

注意:升序用大根堆,降序就用小根堆(默认为升序)

在这里插入图片描述

根据笔者前面堆二叉树和对堆的介绍及实现功能我们就可以推导出利用堆排序的步骤

1. 把无序数组构建成二叉堆。
2. 循环删除堆顶元素,移到集合尾部,调节堆产生新的堆顶。

当我们删除一个最大堆的堆顶(并不是完全删除,而是替换到最后面),经过自我调节,第二大的元素就会被交换上来,成为最大堆的新堆顶。

由于二叉堆的这个特性,我们每一次删除旧堆顶,调整后的新堆顶都是大小仅次于旧堆顶的节点。那么我们只要反复删除堆顶,反复调节二叉堆,所得到的集合就成为了一个有序集合,

堆排序是不稳定的排序,空间复杂度为O(1),平均的时间复杂度为O(nlogn),最坏情况下也稳定在O(nlogn)

// 对数组进行堆排序,降序
void HeapSort(int* a, int n)
{
	assert(a);

	//找到最小元素,实现小堆
	for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}

	//提取小堆顶,利用向下堆处理实现排序
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
  • 49
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 19
    评论
堆排序是一种基于堆的排序算法,它将待排序序列构建成一个小根堆或大根堆,然后依次将堆顶元素与堆中最后一个元素交换位置,并将堆的大小减1,重复执行该操作直到堆为空。由于小根堆或大根堆的特性,每次交换后堆的性质仍然得以满足,因此可以保证最终得到一个有序序列。 具体来说,堆排序的过程如下: 1. 将待排序序列构建成一个小根堆或大根堆。 2. 将堆顶元素与堆中最后一个元素交换位置,并将堆的大小减1。 3. 对新的堆顶元素进行向下调整操作,使其重新满足小根堆或大根堆的性质。 4. 重复执行步骤2和步骤3,直到堆为空。 堆排序的时间复杂度为O(nlogn),其中n为待排序序列的长度。由于堆排序的操作都是在原地进行的,因此它不需要额外的存储空间,是一种空间复杂度为O(1)的排序算法。 以下是一个使用小根堆进行升序排序的例子: ```python def heap_sort(nums): # 构建小根堆 def heapify(nums, n, i): smallest = i left_child = 2 * i + 1 right_child = 2 * i + 2 if left_child < n and nums[left_child] < nums[smallest]: smallest = left_child if right_child < n and nums[right_child] < nums[smallest]: smallest = right_child if smallest != i: nums[i], nums[smallest] = nums[smallest], nums[i] heapify(nums, n, smallest) n = len(nums) # 构建小根堆 for i in range(n // 2 - 1, -1, -1): heapify(nums, n, i) # 依次将堆顶元素与堆中最后一个元素交换位置,并将堆的大小减1 for i in range(n - 1, 0, -1): nums[0], nums[i] = nums[i], nums[0] heapify(nums, i, 0) return nums ``` 对于输入序列[3, 5, 2, 8, 1, 7, 4, 6],经过堆排序后,得到的有序序列为[1, 2, 3, 4, 5, 6, 7, 8]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值