超声信号降噪处理的创新融合算法

1.GWO-VMD

核心:使用灰狼优化算法优化VMD参数提升分解效率

将灰狼算法引入VMD分解中,以多尺度排列熵作为灰狼算法的自适应函数,对VMD小波阈值分解后IMF分量的噪声分量去噪,采用相关系数法将VMD分解的IMF分量区分为有用分量和噪声分量,然后利用小波阈值函数对噪声分量进一步去噪。

2.SE-PSO-VMD

核心:引入SE优化VMD的参数结合PSO进行自适应分解

通过VMD将USM振动信号分解为IMF,使用样本熵作为PSO的适应度函数,评估IMF分量的复杂度,并结合粒子群优化算法来优化IMF的数量和惩罚因子,确保分解效果最佳。

3.CEEMDAN-wavelet packet

核心:结合CEEMDAN与小波包分解提高分解精度

利用CEEMDAN对超声回波信号进行分解,得到IMF分量,利用相关系数法提取噪声成分,利用小波包阈值法对高频噪声成分进行处理。

4.ICEEMDAN-MMSV-WT

核心:改进的CEEMDAN结合多尺度奇异值分解与WT

ICEEMDAN将信号分解为IMF,MMSVC通过ICEEMDAN识别所有IMF,并将IMF分为高频和低频分量,高频IMF分量首先由WT进行去噪,然后与低频分量重构得到去噪信号。

四种算法对比总结

方法优化算法分解方法去噪方法优点
GWO-VMD灰狼优化算法(GWO)VMD小波阈值去噪全局搜索能力强,适合优化VMD参数
SE-PSO-VMD粒子群优化(PSO)VMD样本熵优化局部搜索能力强,适应信号复杂性
CEEMDAN-waveletCEEMDAN小波包阈值去噪减少模态混叠,适合处理高频噪声
ICEEMDAN-MMSV-WTICEEMDAN多尺度奇异值分解+小波变换进一步减少模态混叠,精确处理高频噪声

适用场景:

  • GWO-VMD:适合需要全局优化VMD参数的场景,尤其是信号复杂度较高的情况。

  • SE-PSO-VMD:适合需要局部精细优化VMD参数的场景,尤其是信号复杂度较高且噪声较多的情况。

  • CEEMDAN-wavelet:适合需要减少模态混叠并处理高频噪声的场景。

  • ICEEMDAN-MMSV-WT:适合需要进一步减少模态混叠并精确处理高频噪声的场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值