1.GWO-VMD
核心:使用灰狼优化算法优化VMD参数提升分解效率
将灰狼算法引入VMD分解中,以多尺度排列熵作为灰狼算法的自适应函数,对VMD小波阈值分解后IMF分量的噪声分量去噪,采用相关系数法将VMD分解的IMF分量区分为有用分量和噪声分量,然后利用小波阈值函数对噪声分量进一步去噪。
2.SE-PSO-VMD
核心:引入SE优化VMD的参数结合PSO进行自适应分解
通过VMD将USM振动信号分解为IMF,使用样本熵作为PSO的适应度函数,评估IMF分量的复杂度,并结合粒子群优化算法来优化IMF的数量和惩罚因子,确保分解效果最佳。
3.CEEMDAN-wavelet packet
核心:结合CEEMDAN与小波包分解提高分解精度
利用CEEMDAN对超声回波信号进行分解,得到IMF分量,利用相关系数法提取噪声成分,利用小波包阈值法对高频噪声成分进行处理。
4.ICEEMDAN-MMSV-WT
核心:改进的CEEMDAN结合多尺度奇异值分解与WT
ICEEMDAN将信号分解为IMF,MMSVC通过ICEEMDAN识别所有IMF,并将IMF分为高频和低频分量,高频IMF分量首先由WT进行去噪,然后与低频分量重构得到去噪信号。
四种算法对比总结
方法 | 优化算法 | 分解方法 | 去噪方法 | 优点 |
---|---|---|---|---|
GWO-VMD | 灰狼优化算法(GWO) | VMD | 小波阈值去噪 | 全局搜索能力强,适合优化VMD参数 |
SE-PSO-VMD | 粒子群优化(PSO) | VMD | 样本熵优化 | 局部搜索能力强,适应信号复杂性 |
CEEMDAN-wavelet | 无 | CEEMDAN | 小波包阈值去噪 | 减少模态混叠,适合处理高频噪声 |
ICEEMDAN-MMSV-WT | 无 | ICEEMDAN | 多尺度奇异值分解+小波变换 | 进一步减少模态混叠,精确处理高频噪声 |
适用场景:
-
GWO-VMD:适合需要全局优化VMD参数的场景,尤其是信号复杂度较高的情况。
-
SE-PSO-VMD:适合需要局部精细优化VMD参数的场景,尤其是信号复杂度较高且噪声较多的情况。
-
CEEMDAN-wavelet:适合需要减少模态混叠并处理高频噪声的场景。
-
ICEEMDAN-MMSV-WT:适合需要进一步减少模态混叠并精确处理高频噪声的场景。