群智能优化算法(包含PSO、ACO、WOA、GWO、BA理论及代码)

群智能优化算法是一类模拟自然界中群体行为的优化算法。通过模仿群体生物(如鸟群、鱼群、蚁群等)的协作和群体智能,群智能优化算法能够有效地搜索和优化问题解空间,主要包括粒子群优化算法(PSO)、蚁群优化算法(ACO)、蝙蝠算法(BA)、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)等,群智能优化算法广泛应用于各类复杂优化问题,包括机器学习、路径规划、函数优化等。

1.粒子群优化算法(PSO,Particle Swarm Optimization)

灵感来源:粒子群优化算法受到鸟群觅食行为的启发。每个粒子代表解空间中的一个候选解,粒子通过局部最佳解和全局最佳解的引导,更新自己的位置。

基本原理

  • 每个粒子有一个位置和速度,表示解空间中的一个点。
  • 粒子根据自己的历史最佳位置和全局最佳位置来调整速度和位置。
  • 算法通过迭代不断逼近全局最优解。

更新公式:

其中,w 是惯性权重,c1c2 是加速常数,r1r2 是随机数,pbest_i 是粒子的历史最佳位置,gbest 是全局最佳位置。

function pso()
    % 参数设置
    n = 30; % 粒子数量
    dim = 2; % 问题维度
    max_iter = 100; % 最大迭代次数
    w = 0.7; % 惯性权重
    c1 = 1.5; % 个体学习因子
    c2 = 1.5; % 群体学习因子
    lb = -10; % 下界
    ub = 10; % 上界

    % 初始化粒子位置和速度
    x = lb + (ub - lb) * rand(n, dim);
    v = zeros(n, dim);
    pbest = x; % 个体最优位置
    gbest = x(1, :); % 全局最优位置

    % 迭代优化
    for iter = 1:max_iter
        for i = 1:n
            % 更新速度
            v(i, :) = w * v(i, :) + c1 * rand(1, dim) .* (pbest(i, :) - x(i, :)) ...
                     + c2 * rand(1, dim) .* (gbest - x(i, :));
            % 更新位置
            x(i, :) = x(i, :) + v(i, :);
            % 边界处理
            x(i, :) = max(min(x(i, :), ub), lb);
            % 更新个体最优
            if fitness(x(i, :)) < fitness(pbest(i, :))
                pbest(i, :) = x(i, :);
            end
            % 更新全局最优
            if fitness(pbest(i, :)) < fitness(gbest)
                gbest = pbest(i, :);
            end
        end
        % 显示当前最优值
        fprintf('Iteration %d, Best Fitness: %f\n', iter, fitness(gbest));
    end
    disp('Global Best Solution:');
    disp(gbest);
end

% 目标函数(以Rastrigin函数为例)
function y = fitness(x)
    y = sum(x.^2 - 10 * cos(2 * pi * x) + 10);
end

2.蚁群优化算法(ACO,Ant Colony Optimization)

灵感来源:蚁群通过信息素的传递来寻找最短路径。蚂蚁在找到食物的过程中,沿途留下信息素,其他蚂蚁会偏向信息素较浓的路径,逐步寻找最优路径。

基本原理

  • 每个蚂蚁代表一个解,蚂蚁根据信息素的浓度选择路径。
  • 蚂蚁根据路径的质量(比如距离或代价)更新信息素ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值