小红书算法岗面试,面试官还是很喜欢拷打的。。。

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


最近小红书又准备优化员工,不知道对我们是否有影响。

这是前段时间我第一次尝试跨方向找算法岗,红书面试官还是很喜欢拷打的,会关注我这种CV多模态背景的推荐算法基础怎么样。

小红书三位面试官给我的最大启发:是否能把自己的所学,用于解决特定问题(即便不是相关背景),才是候选人身上最大的闪光点。

一面

  • 论文问了十多分钟,细问课程学习怎么设计的,怎么判断样本可靠还是不可靠,训练流程。

  • 多模态比赛细问难负样本挖掘怎么做。

  • 写一下你用到的图到文的对比学习 loss 代码。

  • 如何理解 embedding?

  • 之前了解的推荐模型有哪些?把你刚刚说的多路召回和排序模型讲一下。

  • self attention 公式写一下,定量解释一下为什么要除以根号 dk?

  • 了解哪些 loss 函数?交叉熵, triplet, hard triplet, 对比 loss,mse loss,对抗 loss,focal loss。

  • 目前主流的开源大模型体系有哪些?

  • 使用过开源大模型有哪些?

  • prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?

  • 做过那些大模型的研究和实践

代码考察

一个长度为n的整数数组nums,其中nums的所有整数都在范围[1,n]内,且每个整数出现一次或两次 。

请你就找出所有出现两次的整数,请实现一个时间复杂度为O(n)且仅使用O(1)额外空间的算法。

二面

  • 自我介绍

  • 对推荐算法模型有什么了解,BST 和 SDM,介绍一下 SDM?

  • 实现一个 Conv 的代码?

  • 一层 Conv 计算的时间复杂度是多少?

  • 激活函数了解哪些? sigmoid 能用在哪些场景?

  • 为什么sin cos不能用作激活函数?

  • 二分类为啥不用 mse loss?

  • 项目里为啥会用到 GRU? 跟普通 LSTM 的差别你了解吗?

  • 讲一下 BERT 的结构,为什么 BERT 很强大?

  • BERT 的 MLM 任务为啥会有效果?

  • 大模型的幻觉问题

  • InstructGPT 三个阶段的训练过程,用语言描述出来

  • 大模型推理加速的方法

  • Deepspeed分布式训练的了解,zero 0-3的了解

  • LLM的评估方式有哪些?特点是什么?

代码考察

  • LeetCode 接雨水

  • LeetCode 最大连续子数组乘积

三面

  • 上来先写个二叉树的题目,由于树当时刷的不多,最后在面试官指导下发写出来了

  • 平时如何自学推荐算法知识?看过最近的推荐论文吗?

  • 难负样本一定有助于模型训练吗?

  • 论文中 attention 不会导致很大的训练开销吗?

  • 看做过域泛化的工作,解释一下 domain generalization 原理?为啥你的方法能 work?

  • 如果训练语料和测试存在很大 gap ,你觉得域泛化的学术方法能帮助解决吗?面试官看我洋洋洒洒介绍,笑着说工业界很多方法不喜欢花里胡哨

  • 为什么 transformer 会比 GRU 更有效?有实际对比过吗?

  • 如果能来实习,每周能出勤几天?

资料获取和交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型算法技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值