节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。
针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。
总结链接如下:
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们
最近小红书又准备优化员工,不知道对我们是否有影响。
这是前段时间我第一次尝试跨方向找算法岗,红书面试官还是很喜欢拷打的,会关注我这种CV多模态背景的推荐算法基础怎么样。
小红书三位面试官给我的最大启发:是否能把自己的所学,用于解决特定问题(即便不是相关背景),才是候选人身上最大的闪光点。
一面
-
论文问了十多分钟,细问课程学习怎么设计的,怎么判断样本可靠还是不可靠,训练流程。
-
多模态比赛细问难负样本挖掘怎么做。
-
写一下你用到的图到文的对比学习 loss 代码。
-
如何理解 embedding?
-
之前了解的推荐模型有哪些?把你刚刚说的多路召回和排序模型讲一下。
-
self attention 公式写一下,定量解释一下为什么要除以根号 dk?
-
了解哪些 loss 函数?交叉熵, triplet, hard triplet, 对比 loss,mse loss,对抗 loss,focal loss。
-
目前主流的开源大模型体系有哪些?
-
使用过开源大模型有哪些?
-
prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?
-
做过那些大模型的研究和实践
代码考察
一个长度为n的整数数组nums,其中nums的所有整数都在范围[1,n]内,且每个整数出现一次或两次 。
请你就找出所有出现两次的整数,请实现一个时间复杂度为O(n)且仅使用O(1)额外空间的算法。
二面
-
自我介绍
-
对推荐算法模型有什么了解,BST 和 SDM,介绍一下 SDM?
-
实现一个 Conv 的代码?
-
一层 Conv 计算的时间复杂度是多少?
-
激活函数了解哪些? sigmoid 能用在哪些场景?
-
为什么sin cos不能用作激活函数?
-
二分类为啥不用 mse loss?
-
项目里为啥会用到 GRU? 跟普通 LSTM 的差别你了解吗?
-
讲一下 BERT 的结构,为什么 BERT 很强大?
-
BERT 的 MLM 任务为啥会有效果?
-
大模型的幻觉问题
-
InstructGPT 三个阶段的训练过程,用语言描述出来
-
大模型推理加速的方法
-
Deepspeed分布式训练的了解,zero 0-3的了解
-
LLM的评估方式有哪些?特点是什么?
代码考察
-
LeetCode 接雨水
-
LeetCode 最大连续子数组乘积
三面
-
上来先写个二叉树的题目,由于树当时刷的不多,最后在面试官指导下发写出来了
-
平时如何自学推荐算法知识?看过最近的推荐论文吗?
-
难负样本一定有助于模型训练吗?
-
论文中 attention 不会导致很大的训练开销吗?
-
看做过域泛化的工作,解释一下 domain generalization 原理?为啥你的方法能 work?
-
如果训练语料和测试存在很大 gap ,你觉得域泛化的学术方法能帮助解决吗?面试官看我洋洋洒洒介绍,笑着说工业界很多方法不喜欢花里胡哨
-
为什么 transformer 会比 GRU 更有效?有实际对比过吗?
-
如果能来实习,每周能出勤几天?
资料获取和交流
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
成立了大模型算法技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流