5款极其强大的大模型文生图工具!

文生图技术是一种基于深度学习的技术,可以根据自然语言描述生成相应的高品质图像。图片

下面介绍几个目前市场上比较优秀的工具或网站,并制作一张男性的白袍巫师图来比较。

针对大模型和AIGC技术趋势、AIGC 算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

《AIGC 面试宝典》(2024版) 正式发布!

1. Deep Dream Generator

网站:https://deepdreamgenerator.com

Deep Dream Generator 可以根据自然语言描述生成高品质图像,同时提供了多种不同风格和效果,包括水墨画风格、漫画风格、素描风格等,方便用户进行自由选择。

该工具还提供了一些高级功能,如风格迁移、图像分割等,让用户可以更加自由和灵活地控制生成的图像。图片

2. Dall-E

DALL-E 是由 OpenAI 开发的一个文字生成图像的AI工具,它可以生成符合自然语言描述的图像,并且在图像生成的过程中可以实现对图像的细节控制。

DALL-E 在 ChatGPT 这辅助下,可以让不会念咒语的麻瓜很快上手,他的风格跨度会比前面的Deep Dream Generator 再大一点,但效果如何就见仁见智。图片

3. Midjourney

Midjourney 应该是最无人不知不人不晓的工具了,网路上看到很多很屌的图,很高机率都产自这里,缺点就是你要熟悉 discord 机器人的用法。图片Midjourney 优点是生成的图像品质高、细节丰富、并且支持多种不同类型和风格的图像生成,而且还提供了一些高级功能,如风格迁移、多类型混合等,例如你点discord 的V1 就可以针对第一张图继续生成,缺点就是大家都会看到你的图。图片是不是帅很多

4. Leonardo AI

近期相当火红的AI 产图工具,某种程度来说,功能比上面3 个健全,但学习曲线也高一点,注册较为麻烦,需要等待邀请才可以使用,可能之后会正式开放注册吧。

图片

Leonardo AI 强就强在他保有Midjourney 的功能,但是是用web 的形式呈现,而且每个AI 参数、生成细节都可以自由调整,对于咏唱不熟悉的人,也有辅助题词的功能,对于想好好研究AI 生成图片,但没有工程师背景的人来说,是很棒的首选工具。

图片

5. Stable Diffusion

放在压轴,就代表这是我认为目前最强大的工具,Stable Diffusion 不单单是文字产图的技术,也是他的工具名称,上面的Online 版可以提供入门魔法师进行咏唱,如果你有一定的程式能力,我会建议你使用下面AUTOMATIC1111 的Web UI 来玩,你会发现新大陆。

虽然会需要用到你的电脑资源(当然建议要有GPU),但好处是完全免费,你要生成几张图都不会有人收钱。图片如果你要深入研究,建议你还是在个人电脑上学习,Stable Diffusion 的优点除了上面4 个工具功能外,还能提供你训练自己的模型,如建立自己的LoRA 模型,让你可以做出虚拟角色、或是虚拟Coser,天花板的上限非常高。

### 关于文本生成图像的大规模模型 SORA 的介绍 #### 模型概述 大规模模型 SORA 展现出了卓越的文本到图像转换能力。该模型的优势在于其高效的生成算法强大的文本建模能力,这使得它能够生成高质量、有意义的文本以及对应的视觉内容[^1]。 #### 技术特点 - **高效生成算法**:通过优化内部架构设计,实现了快速而稳定的图像合成过程。 - **强大文本理解力**:不仅限于简单的关键词匹配,而是深入理解输入文本语义,从而创建更加贴切目标描述的画面效果。 - **高分辨率输出支持**:可以处理并产出细节丰富的高清图片,在保持计算效率的同时提升了最终作品的质量。 #### 应用场景与发展前景 尽管 SORA 在静态图像创作方面表现出色,但在动态影像领域仍面临一定挑战。例如,当涉及到视频编辑时,由于需要逐帧调整画面内容,整个操作变得相对复杂且耗费时间较长;另外,为了更好地服务于实际应用需求,还需要进一步开发易于使用的界面工具来简化用户的交互体验[^4]。 ```python import torch from sora_model import SORAGenerator def generate_image_from_text(text_prompt, model_path='path/to/sora.pth'): device = 'cuda' if torch.cuda.is_available() else 'cpu' generator = SORAGenerator().to(device) checkpoint = torch.load(model_path,map_location=device) generator.load_state_dict(checkpoint['model_state']) with torch.no_grad(): generated_img_tensor = generator.generate(text=text_prompt) return generated_img_tensor.cpu() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值