面了抖音算法岗,被疯狂拷打。。。

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们星球


大家好,最近面试了抖音 NLP 算法岗,八股文我准备的还是比较充分,但手撕代码题,每次问到都特别紧张。

这次面试官人很 Nice,也很有耐心,给了一些引导和思路,虽然多浪费了一下时间,最终还是做出来了。

一面

  1. 聊项目

  2. AUC的两种公式是?你能证明这两种等价的吗?

  3. BERT-CRF中,为什么要加CRF?好处是?

  4. self-attention为什么要用QKV三个矩阵,不用有什么问题?有没有哪个模型的Q和K矩阵是一样的?

  5. reinforce属于on-policy还是off-policy?为什么?

  6. reinforce带上baseline好处是?reinforce的loss写一下?

  7. 策略梯度会推导吗?简单写一下?

  8. 介绍大模型微调的优化方法及其区别

  9. 比较ChatGLM、Llama、qwen等大模型的区别

  10. 比较 Layer Normalization(Tayernormalization)和Batch Normalization的区别

  11. 大模型 langchain 和 Ilamaindex,比较两者的区别

  12. 描述从0到1训练大模型的流程、方法及注意事项

  13. 当前大模型检索存在的问题,以及如何进行RAG(Retrieval-Augmented Generation)优化的方法

代码题

代码题一般别着急写,先跟面试官说下思路,确定了再写

  1. 给定一个无重复整数数组,返回所有可能的排列
Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]
  1. 矩阵置零:给定一个 m * n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0

二面

  1. 介绍项目

  2. 知识蒸馏有哪几种?你觉得哪种效果最好?

  3. nlp 的数据增强方法,主要有哪几种?每一种举个例子?

  4. 分类的损失函数为什么是交叉熵而不是mse?

  5. BERT对输入文本的长度有什么限制,为什么要限制长度呢?

  6. 目前有哪几种注意力机制?

  7. 给出emb_size, max_len, vocab_size, ff_inner_size,num_heads, 12层,求BERT参数量 项目常规问题:项目中印象最深的点,怎么解决的,提升多少

代码题

n 皇后问题,基于基础版进行了升级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值