Llama 3.3 开源!一文讲透模型推理、模型微调全流程

最近已有不少大厂已停止秋招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。

总结链接如下:

喜欢本文记得收藏、关注、点赞


01 引言

近期,Meta开源了Llama 3.3 多语言大型语言模型(LLM),Llama 3.3 是一个预训练并经过指令调优的生成模型,参数量为70B(文本输入/文本输出)。Llama 3.3 指令调优的纯文本模型针对多语言对话用例进行了优化,并在常见的行业基准测试中优于许多可用的开源和闭源聊天模型。

Llama 3.3 是一个使用优化后的Transformer架构的自回归语言模型。调优版本使用监督微调(SFT)和基于人类反馈的强化学习(RLHF)来与人类对有用性和安全性的偏好保持一致。

  • 训练数据:新的公开在线数据混合集

  • 参数量:70B

  • 输入模态:多语言文本

  • 输出模态:多语言文本和代码

  • 上下文长度:128K

  • GQA:是

  • 训练tokens:15T+(仅指预训练数据)

  • 知识截止日期:2023年12月

  • 支持的语言: 英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语

02 模型推理

transformers推理

import transformers
import torch
from modelscope import snapshot_download

model_id = snapshot_download("LLM-Research/Llama-3.3-70B-Instruct")

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])

Ollama:一行命令运行魔搭上的 Llama-3.3-70B-Instruct GGUF模型

  1. 设置ollama下启用
ollama serve
  1. ollama run ModelScope任意GGUF模型,指定model id即可:
ollama run modelscope.cn/lmstudio-community/Llama-3.3-70B-Instruct-GGUF

图片

03 模型推理

这里我们介绍使用ms-swift 3.0对Llama3.3进行自我认知微调。

在开始微调之前,请确保您的环境已正确安装

# 安装ms-swift
pip install git+https://github.com/modelscope/ms-swift.git

微调脚本如下:

CUDA_VISIBLE_DEVICES=0,1 swift sft \
    --model LLM-Research/Llama-3.3-70B-Instruct \
    --dataset AI-ModelScope/alpaca-gpt4-data-zh#500 \
           AI-ModelScope/alpaca-gpt4-data-en#500 \
              swift/self-cognition#500 \
    --train_type lora \
    --lora_rank 8 \
    --lora_alpha 32 \
    --num_train_epochs 1 \
    --logging_steps 5 \
    --torch_dtype bfloat16 \
    --max_length 2048 \
    --learning_rate 1e-4 \
    --output_dir output \
    --target_modules all-linear \
    --model_name 小黄 'Xiao Huang' \
    --model_author 魔搭 ModelScope \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 16

训练显存占用:

图片

推理脚本:

CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/vx-xxx/checkpoint-xxx \
    --stream true

推理效果:
图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值