既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
遍历路径,shp批量裁剪nc
20240316, 19:42, YMJ
“”"
import os
import geopandas
import numpy as np
import rasterio
from rasterio.enums import Resampling
import xarray as xr
from rasterio.transform import from_origin
from shapely.geometry import mapping, box
import geopandas as gpd
输入文件夹路径
input_folder = ‘D:\CSIF\test’
输出文件夹路径
output_folder = ‘D:\CSIF\daily_clip_resample\’
shp_path = ‘D:\CMFD\test\area.shp’
gdf = gpd.read_file(shp_path)
获取输入文件夹中所有的 NetCDF 文件列表
nc_files = []
for root, subroot, files in os.walk(input_folder):
for file in files:
if file.endswith(“nc”):
file_path = os.path.join(root, file)
nc_files.append(file_path)
print(nc_files)
循环处理每个 NetCDF 文件
for nc_file in nc_files:
# 构造完整的输入文件路径
input_nc_file = os.path.join(input_folder, nc_file)
# 构造输出文件名(保留原始文件名,但修改扩展名为 '.tif')
output_filename = os.path.splitext(nc_file)[0] + '.tif'
output_tif_file = os.path.join(output_folder, output_filename)
# 打开待裁剪的 NetCDF 文件
data_ds = xr.open_dataset(input_nc_file)
data_ds.rio.write_crs("EPSG:4326", inplace=True)
# 打开输出 TIFF 文件,并写入裁剪后的数据
data_ds.rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=True)
clipped_ds = data_ds.rio.clip(gdf.geometry.apply(mapping), gdf.crs, drop=True)
data = clipped_ds.clear_daily_SIF.values
transform = from_origin(clipped_ds['lon'].values.min(),
clipped_ds['lat'].values.min(),
clipped_ds['lon'].values[1] - clipped_ds['lon'].values[0],
clipped_ds['lat'].values[0] - clipped_ds['lat'].values[1])
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**