嘉立创esp32s3n8r8开发板 小智机器人

今天了解到b站虾哥的小智机器人,正好自己手上有一块嘉立创的esp32开发板,于是产生了复刻的想法。

不过在烧录固件后,发现没有“xiaozhi”这一个WIFI;看了看虾哥的文档,让去看看串口打印内容,在把内容喂给AI后,发现是“根据日志显示,设备在启动过程中因 SPI Flash 容量不匹配导致断言失败,触发无限重启循环”。因为虾哥用的r16的板子,“生成的 partition-table.bin 占用 13MB Flash,超过配置的 8MB 上限”(不过烧录确实成功了,bin文件大概3.6m),所以需要重新配置一下“partitions.csv”。

如下图:

# 示例分区(需核对实际文件) nvs, data, nvs, 0x9000, 0x6000 phy_init, data, phy, 0xf000, 0x1000 factory, app, factory, 0x10000, 1M storage, data, spiffs, , 3M # 可能超限!

然而在编译过程中,工程还是会报错:“错误定位:ESP-IDF 项目编译时出现 隐式函数声明 和 语法错误,主要涉及 ESP_COMPILER_DIAGNOSTIC_PUSH_IGNORE 和 ESP_COMPILER_DIAGNOSTIC_POP 宏定义缺失,以及缺少分号问题。”

依旧使用ai,屏蔽报错代码,“// 替换 ESP_COMPILER_DIAGNOSTIC_POP 为标准 GCC 宏 #pragma GCC diagnostic pop”。

到这一步,工程便已经能成功编译;选择好com口烧录。

烧录完成后成功出现“xiaozhi” WIFI,手机连接上配置好网络就可以了。

不过因为我使用的是嘉立创的开发板,io口不一样,同时我现在就只有一块裸板,根本收不到小智的语言验证码、添加不了设备。那难道就到此结束了吗?

哎!既然串口会打印日志信息,那验证码什么的也会打印出来吗?

配置好波特率“115200”,打开串口。果然,一大堆信息;照例喂给AI让它看看。

果然有一行是6位数字,有可能是验证码。到小智的后台填上去试试。

滴!添加成功!

不过其实也没必要这样折腾,虾哥有丐版的固件,最低支持4MB SPI Flash。我这样还得改io口配置,功能是否正常也不清楚。

2025-5-18更新:

其实不用更改gpio,默认引脚完全可以用,复刻一下,配件不到20块,建议麦克风买好一点的,不然很难打断小智。

### 小智机器人与AI云端服务平台架构 小智类人型机器人是一种模块化设计的人工能教育机器人,其功能通过人工能技术得以增强,成为学习人工能课程的重要工具[^1]。该机器人的硬件部分基于 ESP32 控制器开发,能够执行复杂的指令集并与外部设备通信。对于初学者而言,有一篇详细的入门教程涵盖了从小智 AI 机器人的工作原理到实际应用的全过程,其中包括云端部署的内容[^2]。 #### AI云平台的服务模式 AI云端服务通常采用 SaaS (Software as a Service) 或 PaaS (Platform as a Service) 的形式提供给开发者和终端用户。SaaS 主要面向最终用户提供即开即用的功能;而 PaaS 则更注重为开发者提供灵活的基础架构支持,允许他们自定义应用程序逻辑和服务接口。 在具体实现上,小智 AI 机器人可以通过 RESTful API 或 WebSocket 协议连接至远程服务器完成数据交换任务。这些交互可能涉及语音识别、自然语言处理(NLP),或者图像分析等功能调用。为了提升用户体验并降低延迟时间,在某些情况下还可以考虑边缘计算方案来分担一部分运算负担。 #### 变量管理与配置文件设置示例 以下是 Python 脚本中的一个简单例子展示如何读取 JSON 配置文件以初始化客户端参数: ```python import json def load_config(file_path): with open(file_path, 'r') as f: config = json.load(f) return config['api_key'], config['base_url'] API_KEY, BASE_URL = load_config('config.json') print(f"Using API Key: {API_KEY[:6]}... and Base URL: {BASE_URL}") ``` 上述代码片段展示了加载本地存储的安全令牌以及目标地址的方法之一。这有助于保护敏感信息不被硬编码进源码当中从而提高安全性。 #### NLP模型集成方法 如果希望进一步加强对话能力,则可引入 Transformer 类库所提供的强大预训练模型作为后台支撑引擎。例如利用 BERT 或 RoBERTa 进行情感分类预测、意图检测等高级语义理解操作[^3]。此类模型一般运行于 GPU 加速集群之上以便快速响应大规模请求流量需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值