CWRU(凯斯西储大学轴承数据中心)数据集用的太多了,建议更换其他的数据集。
比如MFPT(机械故障预防技术学会)数据集,德国Paderborn大学数据集,FEMTO-ST轴承数据集,辛辛那提IMS数据集,XJTU-SY Bearing Datasets(西安交通大学轴承数据集)等等吧
建议进行轴承早期故障诊断的研究,轴承早期故障是一个渐进演化的过程, 随着轴承所在设备的正常运行与损耗,经过累积和演化,逐步发展成为显著故障。轴承早期故障通常具有很强的破坏性、隐蔽性、随机性和复杂性,主要体现在以下几个方面:① 故障影响轻微,对系统性能影响不明显,但不加处置容易迅速恶化或引发 继发故障造成更严重的损失;② 故障征兆信号微弱, 易被系统未知扰动和强噪声掩盖;③ 同一工况下, 轴承正常及故障运行状态的变化十分微小;④ 故障特征可分性弱,故障特征不显著且相互耦合,故障诊断十分困难。由于早期故障和微小故障都有幅值小的特点(特殊情况除外),故有时会不加区分地把两种故障视为同一概念。相对于传统的轴承故障诊断,早期故障诊断是一类更精细的诊断方式,需要增大故障与噪声之间的信噪比,去除扰动和噪声对微小故障的掩盖,因而诊断难度更大,要求更高。
新的滚动轴承故障数据集-南乌拉尔国立大学轴承数据集,可用于论文创新。
该数据集包括来自轴承试验台的数据,数据集的显著特征是它的收集方式:测量线加速度和角加速度的无线传感器直接安装在旋转轴上。
附带参考文献。
数据集见评论区