SIREN函数是一种正弦激活函数,具有周期性和可导不变性,可以快速地将神经网络的初步输出收敛至区间[-1,1]。利用此类特性,可以快速平衡RNN网络输出的各词权重。该激活函数的参数为w,在对比实验中采用多个w值进行实验,以求最佳效果。
前提是要对SIREN函数进行合适的初始化,选取合适的w,否则该函数将无法起到正面效果,甚至 可能会产生负面影响。在进行合适的初始化后, 函数可以将较高的权重进行一定程度的缩小,而较低的权重进行小幅度缩小,以此达到平衡各个词之间差异的效果。
学术咨询
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
Python环境下5种TE过程(Tennessee Eastman Process)故障诊断方法
算法程序运行环境为Python,使用5种方法对TE过程进行故障诊断,分别为:
[1]动态内在最小二乘法(DiPLS)的TE过程故障诊断
[2]基于并发潜结构映射的TE过程故障诊断C-PLS(Concurrent Projection to Latent Structures)
[3]基于动态内在典型相关分析(Dynamic-inner canonical correlation analysis, DiCCA) 的TE过程故障诊断
[4]基于动态内在主成分分析(DiPCA)的TE过程故障诊断
[5]基于潜在结构全投影的TE过程故障诊断
TE 过程(Tennessee Eastman Process)是一个实际化工过程的仿真模拟
完整数据和代码通过学术咨询获得