以旋转机械故障诊断中数据分布特点的建模技巧为例进行说明
数据分布特点 | 建模技巧 | 具体操作(案例) | 适用场景 | 核心价值 |
---|---|---|---|---|
非平稳性(工况变化) | 动态归一化 | 根据实时转速调整振动信号幅值(如将幅值除以转速平方) | 电机在不同转速下运行时振动幅值差异大 | 消除工况变化对特征的影响,使模型关注故障本质 |
多频段特征 | 多尺度卷积 | 使用不同大小的卷积核(如64ms捕捉低频冲击,16ms捕捉高频共振) | 轴承故障同时存在低频冲击和高频共振 | 同时捕捉不同频率的故障特征 |
样本不均衡 | 加权采样+Focal Loss | 对罕见故障样本(如转子断裂)设置5倍采样权重,损失函数中增加难样本惩罚 | 正常样本占90%,故障样本仅10% | 缓解模型偏向多数类的问题 |
跨设备差异 | 领域自适应(Domain Adaptation) | 用对抗训练让模型学习设备无关特征(如齿轮箱A和B的共有故障模式) | 不同工厂的同类型风机振动分布不同 | 实现模型跨设备泛化,减少重复标注 |
噪声干扰 | 时频域双重过滤 | 训练时随机添加高斯噪声,同时在频域滤除50Hz工频干扰 | 现场采集的振动信号含电磁噪声 | 提升模型抗噪能力,避免过拟合 |
时序相关性 | 因果卷积+注意力机制 | 用因果卷积提取历史依赖,注意力机制聚焦异常时段(如轴承故障初期的瞬态冲击) | 故障发展具有时间连续性(如磨损从轻微到严重) | 捕捉故障演化规律,避免漏报早期故障 |
多传感器耦合 | 图神经网络(GNN) | 将振动、温度、声音传感器构建为图节点,建模物理关联(如温度升高导致振动加剧) | 需联合分析多传感器数据(如核电主泵监测) | 挖掘传感器间的因果关系,提升复合故障识别率 |
小样本故障 | 原型网络(Prototypical Network) | 为每类故障构建特征原型(如内圈故障的典型频谱),新样本通过距离原型分类 | 新型故障仅有个位数样本(如某航天轴承首次出现微裂纹) | 实现“见一知百”,解决冷启动问题 |
物理规律约束 | 物理信息损失函数 | 约束模型输出符合故障能量传播规律(如故障特征幅值与转速成正比) | 数据量少但已知故障物理特性 | 防止模型违背物理常识,提升可靠性 |
知乎学术咨询(哥廷根数学学派):
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。