深度学习机械故障诊断中,数据分布很有特点,如何更好的建模?

旋转机械故障诊断中数据分布特点的建模技巧为例进行说明

数据分布特点建模技巧具体操作(案例)适用场景核心价值
非平稳性(工况变化)动态归一化根据实时转速调整振动信号幅值(如将幅值除以转速平方)电机在不同转速下运行时振动幅值差异大消除工况变化对特征的影响,使模型关注故障本质
多频段特征多尺度卷积使用不同大小的卷积核(如64ms捕捉低频冲击,16ms捕捉高频共振)轴承故障同时存在低频冲击和高频共振同时捕捉不同频率的故障特征
样本不均衡加权采样+Focal Loss对罕见故障样本(如转子断裂)设置5倍采样权重,损失函数中增加难样本惩罚正常样本占90%,故障样本仅10%缓解模型偏向多数类的问题
跨设备差异领域自适应(Domain Adaptation)用对抗训练让模型学习设备无关特征(如齿轮箱A和B的共有故障模式)不同工厂的同类型风机振动分布不同实现模型跨设备泛化,减少重复标注
噪声干扰时频域双重过滤训练时随机添加高斯噪声,同时在频域滤除50Hz工频干扰现场采集的振动信号含电磁噪声提升模型抗噪能力,避免过拟合
时序相关性因果卷积+注意力机制用因果卷积提取历史依赖,注意力机制聚焦异常时段(如轴承故障初期的瞬态冲击)故障发展具有时间连续性(如磨损从轻微到严重)捕捉故障演化规律,避免漏报早期故障
多传感器耦合图神经网络(GNN)将振动、温度、声音传感器构建为图节点,建模物理关联(如温度升高导致振动加剧)需联合分析多传感器数据(如核电主泵监测)挖掘传感器间的因果关系,提升复合故障识别率
小样本故障原型网络(Prototypical Network)为每类故障构建特征原型(如内圈故障的典型频谱),新样本通过距离原型分类新型故障仅有个位数样本(如某航天轴承首次出现微裂纹)实现“见一知百”,解决冷启动问题
物理规律约束物理信息损失函数约束模型输出符合故障能量传播规律(如故障特征幅值与转速成正比)数据量少但已知故障物理特性防止模型违背物理常识,提升可靠性

知乎学术咨询(哥廷根数学学派):

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值