最小生成树算法与二分图算法

文章介绍了Prim算法用于稠密图的最小生成树求解,其时间复杂度为O(n^2),并通过堆优化与Kruskal算法对比。同时讲解了Kruskal算法在稀疏图中的应用,以及染色法判定二分图的方法和匈牙利算法求解二分图最大匹配的时间复杂度。
摘要由CSDN通过智能技术生成



概述

概述


P r i m Prim Prim 算法 - 稠密图 - O ( n 2 ) O(n^2) O(n2)

思路概述

D i j k s t r a Dijkstra Dijkstra 算法很相近,都是每个点轮一遍然后贪心找最小值,同样, P r i m Prim Prim 也可以用堆优化,但是不如 K r u s k a l Kruskal Kruskal 算法,所以不用。

  • 用到三个数组:g[][]邻接矩阵存边,st[]用于标记那些节点在生成树中,dist[]存储每个节点到生成树的最小距离。
  • 首先,初始化每个点到生成树的距离,在一开始,除了根节点是 0 0 0,其他都是 I N F INF INF;
  • 然后每个点轮一遍(因为生成树要每个点都在)
    • 再次遍历,寻找到生成树最小的边连接的点,如果遍历完了发现最小值是 I N F INF INF,说明这个图不联通,没有最小生成树。
    • 将这个点更新到生成树里去,累计生成树的边长,然后用这个点的值再更新一遍dist[]数组。

时间复杂度分析

外层循环 n n n 次,内层是 2 n 2n 2n 次,所以是 O ( n ⋅ 2 n ) O(n·2n) O(n2n),也就是 O ( n 2 ) O(n^2) O(n2)


AcWing 858. Prim算法求最小生成树

题目链接:https://www.acwing.com/activity/content/problem/content/924/

最小生成树

CODE
#include <iostream>  // 引入输入输出流库
#include <cstring>   // 引入字符串处理库
#include <algorithm> // 引入算法库

using namespace std; // 使用标准命名空间

const int N = 520, INF = 0x3f3f3f3f; // 定义常量N和INF
int g[N][N]; // 定义邻接矩阵g
int dist[N]; // 定义距离数组dist
bool st[N];  // 定义状态数组st
int n, m;    // 定义顶点数n和边数m

int prim(){  	// 定义prim算法函数
    memset(dist, 0x3f, sizeof dist); 	// 初始化dist数组
    dist[1] = 0; 	// 将起点的距离设为0
    
    int res = 0; 	// 初始化结果res
    for(int i = 0; i < n; ++i){ 	// 遍历所有顶点
        int t = -1; 	// 初始化t
        
        for(int j = 1; j <= n; ++j) 	// 遍历所有顶点
            if(!st[j] && (t == -1 || dist[t] > dist[j])) // 找到未被访问且距离最小的顶点
                t = j;
        
        if(dist[t] == INF) return INF; 	// 如果找不到顶点,返回INF
        
        res += dist[t]; 	// 更新结果
        st[t] = true; 		// 标记顶点t已被访问
        
        for(int j = 1; j <= n; ++j) dist[j] = min(dist[j], g[j][t]); 	// 更新距离
    }

    return res; 	// 返回结果
}

int main() 		// 主函数
{
    memset(g, 0x3f, sizeof g); 	// 初始化邻接矩阵g
    
    cin >> n >> m; 		// 输入顶点数和边数
    
    while (m -- ){ 		// 遍历所有边
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c); 	// 输入边的两个顶点和权值
        
        g[a][b] = g[b][a] = min(g[a][b], c); // 更新邻接矩阵
    }
    
    int t = prim(); 	// 调用prim算法
    
    if(t == INF) puts("impossible"); 	// 如果返回INF,输出"impossible"
    else printf("%d\n", t); 			// 否则输出结果
}



K r u s k a l Kruskal Kruskal 算法 - 稀疏图 - O ( m l o g m ) O(mlogm) O(mlogm)

思路解析

  • 首先,将所有边按权值排序,这一步是 K r u s k a l Kruskal Kruskal 的瓶颈,复杂度是 O ( m ⋅ l o g m ) O(m·logm) O(mlogm)
  • 接着初始化并查集,再把排序好的边轮一遍。
    • 如果边的两个点的根节点不是同一个(两个节点没有全在树中),那就将两个点连起来,然后节点数和权重累积。
  • 最后判断,如果生成树的边不是 n − 1 n - 1 n1 条的话,说明图不联通,没有最小生成树。

时间复杂度分析

由上知排序瓶颈复杂度,然后是后面遍历每一条边的复杂度 O ( m ) O(m) O(m),最后累计就是 O ( m l o g m ) O(mlogm) O(mlogm)
但是由于排序的常数很小,所以实际运行时间比公式算出来要少的多。


AcWing 859. Kruskal算法求最小生成树

题目链接:https://www.acwing.com/activity/content/problem/content/925/

kruskal

CODE
#include <iostream>  // 引入输入输出流库
#include <cstring>   // 引入字符串处理库
#include <algorithm> // 引入算法库

using namespace std; // 使用标准命名空间

const int N = 1e5 + 10, M = 2e5 + 10, INF = 0x3f3f3f3f; 	// 定义常量N、M和INF
int n, m; 	// 定义顶点数n和边数m
int p[N]; 	// 定义并查集数组p

struct edge{ 	// 定义边的结构体
    int a, b, w;
}edges[M];

int find(int x){ 	// 定义并查集的查找函数
    if(x != p[x]) p[x] = find(p[x]);
    return p[x];
}

bool cmp(edge a, edge b){ 	// 定义比较函数,用于排序
    return a.w < b.w;
}

int kruskal(){ // 定义kruskal算法函数
    sort(edges, edges + m, cmp); 	// 对所有边按权值进行排序
    
    for(int i = 1; i <= n; ++i) p[i] = i; 	// 初始化并查集
    
    int res = 0, cnt = 0; 	// 初始化结果res和计数器cnt
    for(int i = 0; i < m; ++i){ 	// 遍历所有边
        int a = find(edges[i].a), b = find(edges[i].b), w = edges[i].w; 
        // 找到边的两个顶点的根节点和权值
        
        if(a != b){ 	// 如果两个顶点不在同一个集合中
            p[a] = b; 	// 合并两个集合
            cnt++; 		// 计数器加1
            res += w; 	// 更新结果
        }
    }
    
    if(cnt < n - 1) return INF; 	// 如果生成树的边数小于n-1,返回INF
    else return res; 	// 否则返回结果
}

int main() // 主函数
{
    cin >> n >> m; 	// 输入顶点数和边数
    
    for(int i = 0; i < m; ++i){ 	// 遍历所有边
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w); 	// 输入边的两个顶点和权值
        
        edges[i] = {a, b, w}; 	// 存储边
    }
    
    int t = kruskal(); 	// 调用kruskal算法
    
    if(t == INF) puts("impossible"); 	// 如果返回INF,输出"impossible"
    else printf("%d\n", t); 	// 否则输出结果
}



染色法判定二分图 - O ( m + n ) O(m + n) O(m+n)

何为二分图?

  • 二分图即指一张图的所有节点可以用两种颜色涂上,且相邻节点必是不同颜色。
  • 对应到集合的映射关系上就是,可以通过移动把节点分为两个集合,左集合只能连右集合,右集合只连左集合。
    对应映射

二分图满足什么条件?

二分图不能出现奇数环

  • 充分性:有奇数环就一定不是二分图。
    • 若存在奇数环,那么从某一点开始分配颜色,分配到最后开始节点又会被分配到另一种颜色,冲突了,所以得证充分性。
  • 必要性:没有奇数环就一定是二分图。
    • 没有了奇数环,那么每个点都会被分配到有且仅有的那一种颜色,必要性得证。
      • 反证法,如果没有奇数环,还有颜色分配冲突,那么说明存在一个偶数环,使得环上的两个相邻节点被分配了相同的颜色。然而,这与我们的颜色分配策略(即相邻节点分配不同颜色)是矛盾的。
  • 因此,如果一个图没有奇数环,那么它一定可以被成功地二分,即它是一个二分图。

思路介绍

当我们用染色法判断二分图时,大概分为以下几步:

  • 遍历所有未被染色的点,将其染色,并对它连接的点染上不同颜色。
    • 如果发现这个点之前染过色,这次染的色跟上次的不同,说明存在奇数环,非二分图。

AcWing 860. 染色法判定二分图

题目链接:https://www.acwing.com/activity/content/problem/content/926/

二分图

CODE
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10, M = 2e5 + 10;
int n, m;
int e[M], ne[M], h[N], idx;
int color[N];

void add(int a, int b){
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;  // 添加边
}

bool dfs(int u, int c){
    color[u] = c;  // 给节点u着色
    
    for(int i = h[u]; i != -1; i = ne[i]){
        int j = e[i];
        if(!color[j]){  // 如果节点j未着色
            if(!dfs(j, 3 - c)) return false;  // 递归着色,如果失败则返回false
        }else if(color[j] == c) return false;  // 如果节点j的颜色与节点u相同,返回false
    }
    
    return true;  // 所有节点都成功着色,返回true
}

int main()
{
    memset(h, -1, sizeof h);  // 初始化邻接表
    
    cin >> n >> m;  // 读入节点数和边数
    
    while (m -- ){
        int a, b;
        scanf("%d%d", &a, &b);  // 读入边的两个节点
        
        add(a, b), add(b, a);  // 添加边
    }
    
    bool flag = true;
    for(int i = 1; i <= n; ++i){  // 遍历所有节点
        if(!color[i]){  // 如果节点i未着色
            if(!dfs(i, 1)){  // 尝试从节点i开始着色,如果失败则设置flag为false并跳出循环
                flag = false;
                break;
            }
        }
    }
    
    if(flag) puts("Yes");  // 如果所有节点都成功着色,输出"Yes"
    else puts("No");  // 否则输出"No"
    return 0;
}


匈牙利算法 - 二分图的最大匹配 - O ( m n ) O(mn) O(mn)

具体思路解析

  • 跟找对象一样,将所有男生集合遍历一遍,每个男生遍历一遍心动对象,找一个没对象的牵手。
    • 如果某一个男生的心动对象已经跟别的男生牵手了,那这个男生就会问上个男生:能不能换一个?于是上一个男生就开始从其他心动对象里面找:
      • 如果找到了,皆大欢喜,上一个男的换对象,这个男的跟心动女生牵手;
      • 没找到,那么后面这个男生继续在其他心动对象里面找一个能牵手的。

时间复杂度分析

先遍历一个集合里的所有点,再遍历点对应的所有边,所以是: O ( m n ) O(mn) O(mn)但是一般来说,常数很小,所以实际耗时比公式算出来的要小很多。


AcWing 861. 二分图的最大匹配

题目链接:https://www.acwing.com/activity/content/problem/content/927/

匈牙利

CODE
#include<cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 520, M = 1e5 + 10;
int h[N], e[M], ne[M], idx;
int n1, n2, m;
int match[N];  // 记录匹配情况
bool st[N];  // 记录节点是否已被搜索过

void add(int a, int b){
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;  // 添加边
}

bool find(int x){
    for(int i = h[x]; i != -1; i = ne[i]){
        int j = e[i];
        
        if(!st[j]){  // 如果节点j未被搜索过
            st[j] = true;
            
            if(match[j] == 0 || find(match[j])){  // 如果节点j未被匹配或者节点j的匹配可以被改变
                match[j] = x;  // 更新匹配情况
                return true;
            }
        }
    }
    
    return false;  // 找不到可增广的路径
}

int main()
{
    memset(h, -1, sizeof h);  // 初始化邻接表
    
    cin >> n1 >> n2 >> m;  // 读入节点数和边数
    
    while (m -- ){
        int a, b;
        scanf("%d%d", &a, &b);  // 读入边的两个节点
        add(a, b);  // 添加边
    }
    
    int res = 0;
    for(int i = 1; i <= n1; ++i){  // 遍历所有节点
        memset(st, false, sizeof st);  // 初始化搜索记录
        if(find(i)) res++;  // 如果找到可增广的路径,结果加一
    }
    
    printf("%d\n", res);  // 输出最大匹配数
    return 0;
}

  • 22
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值