一、前言
优劣解距离法
该算法主要用于解决评价类问题,用于确定各个方案层的最终得分
优点在于能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。
二、学习前的准备
1.极大型指标(效益性指标)成绩越大越好
2.极小型指标(成本型指标)成绩越小越好
当然对于不同的数据,量纲也不相同,为了小区不同指标,需要进行归一化。(我将在后面演示代码)
3.中间型指标(比如ph,适中为好)。
三、学习过程
优劣解距离法类似于AHP层次分析法
转化公式:极小值=极大值-x
并且为了消去不同指标量纲的影响, 需要对已经正向化的矩阵进行标准化处理。
标准化处理的代码如下:
(转到0基础学习数学建模算法第四天)
将标准化处理之后进行归一化
归一化的代码如下:
(转到0基础学习数学建模算法第四天)
通过归一化之后我们就可以计算优劣值距离
通过上述我们知道,优劣解的核心就是将一指标转化成合适的指标。之后进行矩阵标准化,计算得分并归一化。
关注我,下节带来代码的实际操作