数学建模算法0基础学习第三天-优劣解距离法TOPSIS法

一、前言

优劣解距离法

该算法主要用于解决评价类问题,用于确定各个方案层的最终得分

优点在于能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。

二、学习前的准备

1.极大型指标(效益性指标)成绩越大越好

2.极小型指标(成本型指标)成绩越小越好

当然对于不同的数据,量纲也不相同,为了小区不同指标,需要进行归一化。(我将在后面演示代码)

3.中间型指标(比如ph,适中为好)。

三、学习过程

优劣解距离法类似于AHP层次分析法

转化公式:极小值=极大值-x

并且为了消去不同指标量纲的影响, 需要对已经正向化的矩阵进行标准化处理。

标准化处理的代码如下

(转到0基础学习数学建模算法第四天)

将标准化处理之后进行归一化

归一化的代码如下:

(转到0基础学习数学建模算法第四天)

通过归一化之后我们就可以计算优劣值距离

通过上述我们知道,优劣解的核心就是将一指标转化成合适的指标。之后进行矩阵标准化,计算得分并归一化。

关注我,下节带来代码的实际操作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值