💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要:本项目旨在比较提出的5G调制技术——FBMC(滤波器组多载波)和UFMC(通用滤波多载波)与4G通信中使用的OFDM(正交频分复用)调制技术。我们对比这些调制技术的关键参数,以分析每种候选技术的优点。评估中考虑的参数包括功率谱密度、频谱效率、误码率和峰均功率比。该项目使用MATLAB实现。
I. 引言
如今,移动设备的兴起导致现有通信网络负载急剧增加。为了应对不断增长的移动流量,这些网络必须大幅提升数据速率和可靠性。4G技术在数据速率和可靠性方面取得了显著进步。4G所使用的OFDM调制技术能够实现极高的数据速率。然而,为了避免旁瓣过大而使用循环前缀和保护带,导致其频谱效率相比理论性能损失了16%。为了解决OFDM技术的不足,提出了多种调制技术。尽管OFDM取得了巨大成功且仍有许多优势,但针对5G波形提出了许多新想法,这些新波形在某些条件和情况下可以为新的蜂窝系统带来额外优势。潜在需求包括高速数据传输、低延迟传输和节能通信。没有一种单一的波形能够满足所有需求并提供所有答案。这可能导致5G采用一种自适应解决方案,根据具体情况选择最优波形。目前,有几种调制技术正在被考虑用于5G,包括滤波器组多载波(FBMC)、通用滤波多载波(UFMC)和广义频分复用(GFDM)。本文将比较FBMC和UFMC调制技术与现有的OFDM技术。
II. 什么是5G?
关于5G无线技术的最终形态,人们有着许多期望和观点。为了满足行业和用户的需求,有必要在定义过程中纳入所有需求,确保最终定义能够满足大多数用户的需求,同时又不至于过于苛刻而无法实现。以下需求已被广泛接受为5G技术的要求:
-
1-10Gbps的连接速率
-
1毫秒的端到端延迟
-
每单位面积的带宽增加1000倍
-
降低网络能耗
-
低功耗设备的高电池寿命
-
连接设备数量增加10-100倍
-
99.999%的可用性
-
100%的覆盖范围
上述需求范围广泛,许多人认为无法通过单一技术满足。新的方案应设计得能够使多个不同的无线接入网络同时工作,各自满足自身需求。
III. UFMC(通用滤波多载波)
UFMC被视为滤波OFDM和FBMC(滤波器组多载波)调制的泛化。在滤波OFDM中,整个频带被滤波,而在FBMC中,各个子载波被滤波;而在UFMC中,子载波组(子带)被滤波。这种子载波分组方式可以减少滤波器长度(与FBMC相比)。此外,UFMC仍然可以使用QAM(正交幅度调制),这与现有的MIMO(多输入多输出)方案兼容。
所有子载波(N)被划分为子带,每个子带包含固定数量的子载波,并非所有子带都需要用于给定的传输。对每个子带计算N点IFFT(逆快速傅里叶变换),未分配的载波插入零。每个子带通过长度为L的滤波器进行滤波,不同子带的响应被累加。滤波的目的是减少带外频谱辐射。可以根据子带设计不同的滤波器,但在本例中,每个子带使用相同的滤波器。采用参数化的切比雪夫窗来滤除每个子带的IFFT输出,以实现旁瓣衰减。
IX. 结论
本项目的目标是对在5G通信中实现的不同调制方案——FBMC、UFMC和OFDM进行性能分析。这有助于通过考虑诸如PAPR(峰均功率比)、误码率(BER)、功率谱密度和频谱效率等参数来评估调制技术的效率。未来可以通过将这些调制方案应用于不同的无线通信信道来进一步增强研究。此外,可以引入MIMO(多输入多输出)功能,以测试系统在多用户场景下的能力。
详细文章见第4部分。
📚2 运行结果
部分代码:
%snrdB = 12; % SNR in dB
SNR=1:15;
for snrdB=1:length(SNR)
s = rng(211); % Set RNG state for repeatability
numFFT = 512; % Number of FFT points
numGuards = 212; % Guard bands on both sides
K = 4; % Overlapping symbols, one of 2, 3, or 4
numSymbols = 100; % Simulation length in symbols
% Prototype filter
switch K
case 2
HkOneSided = sqrt(2)/2;
case 3
HkOneSided = [0.911438 0.411438];
case 4
HkOneSided = [0.971960 sqrt(2)/2 0.235147];
otherwise
return
end
% Build symmetric filter
Hk = [fliplr(HkOneSided) 1 HkOneSided];
% QAM symbol mapper
bitsPerSubCarrier = 2;
qamMapper = comm.RectangularQAMModulator(...
'ModulationOrder', 2^bitsPerSubCarrier, ...
'BitInput', true, ...
'NormalizationMethod', 'Average power');
% Transmit-end processing
% Initialize arrays
L = numFFT-2*numGuards; % Number of complex symbols per OFDM symbol
KF = K*numFFT;
KL = K*L;
dataSubCar = zeros(L, 1);
dataSubCarUp = zeros(KL, 1);
sumFBMCSpec = zeros(KF*2, 1);
sumOFDMSpec = zeros(numFFT*2, 1);
numBits = bitsPerSubCarrier*L/2; % account for oversampling by 2
inpData = zeros(numBits, numSymbols);
rxBits = zeros(numBits, numSymbols);
txSigAll = complex(zeros(KF, numSymbols));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取