文章概述
LSTM序列预测及CNN-LSTM序列预测对比
针对一段时间内空气污染数据集,我们采用「LSTM」和「CNN-LSTM」两个方法进行训练预测,对比该数据集下不同算法的预测能力。
两个算法在相同「特征选择PCA降维」、「VMD去噪」、「VMD序列分解」和「PSO粒子群优化算法」的条件下,采用「直接预测」,训练输入的历史序列点数规定为10,多步预测滚动次数为2,其中学列分解数为3,算法的进化数和种群数为2,我们绘制效果显示图如下:
对比两个算法结果,不难看出在这段数据集中,CNN-LSTM较于LSTM预测结果更好,不同误差的最终值更低,预测结果更精确。
参考资料
[1] Eric A. Wan, Rudolph van der Merwe. The Unscented Kalman Filter for Nonlin