时间序列预测 | 决策树时间序列预测建模,单步、多步(Python)

19 篇文章 1 订阅 ¥19.90 ¥99.00

(1)数据读取

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
import numpy as np
data = pd.read_csv(‘wind_dataset.csv’, index_col=0, parse_dates=True)
(2)创建滞后特征

data[‘T.MIN_lag3’] = data[‘T.MIN’].shift(3)
data[‘T.MIN.G_lag3’] = data[‘T.MIN.G’].shift(3)
(3)删除NaN值

data = data.dropna()
(4)拆分数据

train_size = int(len(data) * 0.8)
train, test = data[:train_size], data[train_size:]
X_train = train[[‘RAIN’, ‘T.MAX’, ‘T.MIN_lag3’, ‘T.MIN.G_lag3’]]
y_train = train[‘WIND’]
X_test = test[[‘RAIN’, ‘T.MAX’, ‘T.MIN_lag3’, ‘T.MIN.G_lag3’]]
y_test = test[‘WIND’]
注意:训练集并没有WIND,所以这个算法的意思是:仅仅使用[‘RAIN’, ‘T.MAX’, ‘T.MIN_lag3’, 'T.MIN.G_lag3’去构建一个模型,来预测WIND。个人认为不太行,忽略了WIND

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
LSTM(Long Short-Term Memory)是一种适用于时间序列预测的神经网络模型,其具有记忆功能,可以利用长序列信息来进行预测。在进行时间序列的预测时,我们通常会面临两个难点:数据处理和模型搭建。 针对单步预测的LSTM时间序列预测,我们首先需要进行数据处理。一种常用的方法是使用滑动窗口来处理数据。滑动窗口是指将时间序列数据切割成多个固定大小的窗口,每个窗口包含一定数量的历史数据及其对应的目标值。通过这种方式,我们可以将时间序列数据转化为监督学习问题,使得模型能够根据过去的观测值来预测未来的值。具体而言,我们可以将每个窗口的历史数据作为输入,目标值作为输出,从而建立监督学习模型。 接下来是模型的搭建。对于单步预测的LSTM模型,我们可以将一个LSTM层连接到一个全连接层。LSTM层用于学习时间序列的长期依赖关系,而全连接层用于将LSTM层的输出映射到预测的目标值。在模型的参数设定方面,我们可以根据具体问题的需求和原始数据的情况来进行调整,以获得更好的预测效果。 综上所述,单步预测的LSTM时间序列预测包括数据处理和模型搭建两个主要步骤。数据处理阶段中,我们可以使用滑动窗口方法将时间序列数据转化为监督学习问题。模型搭建阶段中,我们可以将一个LSTM层和一个全连接层相连接,以构建一个能够学习时间序列长期依赖关系的神经网络模型。这样的模型可以用于预测未来的单步时间序列数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值