空气质量预测 | Python实现基于线性回归、Lasso回归、岭回归、决策树回归的空气质量预测模型

该博客探讨了使用线性回归、Lasso回归、岭回归和决策树回归建立空气质量预测模型的方法。通过数据探索、清理、可视化和训练,构建预测模型并进行性能评估。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述
在这里插入图片描述

文章概述

政府机构使用空气质量指数 (AQI) 向公众传达当前空气污染程度或预测空气污染程度。 随着 AQI 的上升,公共卫生风险也会增加。 不同国家有自己的空气质量指数,对应不同国家的空气质量标准。

对于空气质量预测,我们将使用 4 种算法:

1.线性回归

2.Lasso回归

3.岭回归

4.决策树回归

通过使用上述算法,我们将通过提供训练数据来训练我们的模型,一旦模型被训练,我们将执行预测。 预测后,我们将通过错误检查和准确性检查来评估这些算法的性能。

遵循的步骤如下:
第一步:数据探索

第二步:数据清理

第三步:数据可视化

第四步:数据训练

第五步:模型创建

第六

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>