空气质量预测 | Python实现基于MLR多元线性回归的空气质量预测模型(Air Quality Prediction)

本文介绍了一种使用Python实现的基于MLR(多元线性回归)的空气质量预测模型。通过分析空气污染物浓度和多种影响因素,该模型能预测空气质量状况。讨论了城市污染源、发展密度、地形地貌和气象对空气质量的影响,并提供了源码设计及参考资料。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

空气质量预测 | Python实现基于MLR多元线性回归的空气质量预测模型(Air Quality Prediction)
空气质量(air quality)的好坏反映了空气污染程度,它是依据空气中污染物浓度的高低来判断的。空气污染是一个复杂的现象,在特定时间和地点空气污染物浓度受到许多因素影响。来自固定和流动污染源的人为污染物排放大小是影响空气质量的最主要因素之一,其中包括车辆、船舶、飞机的尾气、工业企业生产排放、居民生活和取暖、垃圾焚烧等。城市的发展密度、地形地貌和气象等也是影响空气质量的重要因素。

源码设计

# --------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>