不平衡样本下基于逆物理信息的数字孪生轴承故障诊断神经网络

不平衡样本下基于逆物理信息的数字孪生轴承故障诊断神经网络

一、引言
1.1、研究背景及意义

轴承作为旋转机械设备中的关键部件,其健康状态直接影响到整个设备的运行安全与效率。因此,轴承故障诊断技术对于预防设备故障、减少维护成本、提高生产效率具有重要意义。在实际工业应用中,轴承的故障数据往往不平衡,即某些类型的故障数据远少于正常或常见故障的数据,这种不平衡性会给故障诊断带来很大的挑战。

1.2、故障诊断难点

在不平衡数据环境下,传统的故障诊断方法往往难以有效识别少数类故障,导致诊断模型的准确性和可靠性下降。此外,轴承故障信号的复杂性和多样性也增加了故障特征提取和分类的难度。

1.3、数字孪生技术

数字孪生技术通过建立物理设备的虚拟模型,实现对实体设备的实时监控和预测维护。该技术能够整合多源数据,模拟设备运行状态,从而提前发现潜在故障,为故障诊断提供了新的解决方案。

1.4、研究目的与内容

本研究旨在开发一种基于逆物理信息的数字孪生轴承故障诊断神经网络,旨在解决不平衡样本下的故障诊断问题。研究内容包括设计适合不平衡数据的神经网络模型,开发逆物理信息提取方法,以及验证模型在实际应用中的有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值