不平衡样本下基于逆物理信息的数字孪生轴承故障诊断神经网络
一、引言
1.1、研究背景及意义
轴承作为旋转机械设备中的关键部件,其健康状态直接影响到整个设备的运行安全与效率。因此,轴承故障诊断技术对于预防设备故障、减少维护成本、提高生产效率具有重要意义。在实际工业应用中,轴承的故障数据往往不平衡,即某些类型的故障数据远少于正常或常见故障的数据,这种不平衡性会给故障诊断带来很大的挑战。
1.2、故障诊断难点
在不平衡数据环境下,传统的故障诊断方法往往难以有效识别少数类故障,导致诊断模型的准确性和可靠性下降。此外,轴承故障信号的复杂性和多样性也增加了故障特征提取和分类的难度。
1.3、数字孪生技术
数字孪生技术通过建立物理设备的虚拟模型,实现对实体设备的实时监控和预测维护。该技术能够整合多源数据,模拟设备运行状态,从而提前发现潜在故障,为故障诊断提供了新的解决方案。
1.4、研究目的与内容
本研究旨在开发一种基于逆物理信息的数字孪生轴承故障诊断神经网络,旨在解决不平衡样本下的故障诊断问题。研究内容包括设计适合不平衡数据的神经网络模型,开发逆物理信息提取方法,以及验证模型在实际应用中的有效性。