信用卡分析开题报告

本文探讨了在信用卡市场蓬勃发展的背景下,如何利用数据挖掘技术对客户进行分类,通过Python和K-means、PCA算法对信用卡数据进行分析,以创建客户画像并提出业务策略。研究涉及数据预处理、聚类分析及业务建议的提出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本科毕业论文(设计)开题报告

学号

学生姓名

系部

专业

年级

指导教师

职称

开题时间

  月  日

论文(设计)题目

选题意义、价值和目标:

随着经济的发展,我国信用卡市场逐步壮大并日益繁荣。近几年信用卡逐渐成为我国居民个人消费使用最为频繁的支付工具之一。信用卡属于一种贷款,这也构成了客户对于开证银行的债务关系,所以信用卡开证行对于用户的基本信息以及对于其信用价值评估也成为了重要的一环,评估的结果可以用来分析客户的最大信用额度几何、客户是否能够成功开通信用卡业务,以及还款的时间比例等等是否合理。因此商业银行利用先进的数据挖掘技术对客户基本信息分析进行客户分类,区别不同的客户群体,然后针对不同客户群体,采取不同的发卡方式,、营销策略、风险控制举措这些举动都是十分有必要的,也是对信用卡产品获得市场份额有巨大帮助作用的。

通过对信用卡分类对其客户进行分类,可以降低风险,给高贡献、低风险的客户提额的机会,少给或者尽量不给低贡献、高风险的用户额度,也避免后期的纷争。

本文通过数据分析方法和聚类算法,根据已知的信用卡数据给出信用卡分类,从而给出客户画像,给出业务建议。

课题研究方案:

使用python语言,对信用卡数据进行数据清洗、异常值剔除、数据标准化处理,用kmeans模型、PCA主成分分析法等算法分析对信用卡进行分类,使用图形化的方式进行展示,并且根据结果给出客户画像,给出业务建议。

写作提纲:

  • 背景
  • 数据处理
  1.导入数据;
  2.剔除相关性较高的变量;
  3.异常值处理;
  4.使用log变换处理倾斜的变量;
  5.数据标准化处理
三、聚类实现
1.kmeans模型、使用PCA主成分分析法等算法分析;
2.matplotlib图形化展示;
四、结论

基于聚类分析的结果总结各类簇的客户画像,并针对各类簇客户就提高其活跃度、黏性和消费水平给出相应的业务建议。

五、致谢

六、参考文献

主要参考文献:

《机器学习》周志华

《Machine Learning Yearning》吴恩达

《动手学深度学习》阿斯顿·张,李沐

《统计学习方法》 李航

是否可以进入研究和论文(设计)撰写阶段的意见:

                                                  指导教师:

                                                       年   月   日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值