Perona-Malik算法:基于灰度图像的各向异性扩散
各向异性扩散(Anisotropic Diffusion)是一种常用的图像处理技术,它可以改善图像的质量和增强图像的细节。其中,Perona-Malik算法是一种经典的各向异性扩散方法,在灰度图像处理中广泛应用。本文将介绍Perona-Malik算法的原理,并提供相应的源代码实现。
各向异性扩散的原理是通过在图像中引入一个扩散系数,根据像素点的梯度信息来调整像素值的变化速度。这样可以使得边缘信息得到保护,同时平滑图像的区域部分。Perona-Malik算法通过引入一个非线性的扩散函数来实现各向异性扩散。
以下是使用Python实现Perona-Malik算法的示例代码:
import numpy as np
import cv2
def perona_malik_diffusion(image, iterations