各项异性扩散(Anisotropic diffusion)

各向异性扩散,又称P-M扩散,是一种在保持图像细节的同时降低噪声的图像处理技术。它通过梯度下降法最小化能量函数E来实现图像平滑。这种方法在计算摄影学中有多种用途,如细节增强、HDR色调映射、风格化等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各向异性扩散,也叫做P–M扩散,在图像处理和计算机视觉中广泛用于保持图像细节特征的同时减少噪声。

定义

有灰度图像 I(x,y) ,其各向异性扩散方程如下

It=div(c(x,y,t)I)=cI+c(x,y,t)ΔI

其中 Δ 是Laplacian算子 , 是梯度算子, div 是散度, c(x,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值