P1002 [NOIP2002 普及组] 过河卒

这是一个做题经过+题解

题目传送门

洛谷

题目简介

你是一个兵,你过河了,现在你在棋盘上(棋盘看成一个坐标系),你要从原点出发到终点,中途不能经过马所能到的所有点

做题经过

一眼看过去这是一道DP题
请添加图片描述
但是我偏不要DP,很明显DFS更好做,于是我兴高采烈的去写了一串DFS的代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 25;
int n, m, cx, cy, ans;
int vis[maxn][maxn]; 
int fx[2] = {1, 0}, fcx[8] = {-1, 1, -2, 2, 1, -1, 2, -2};
int fy[2] = {0, 1}, fcy[8] = {-2, 2, -1, 1, -2, 2, -1, 1};
bool bj(int x, int y) {
	if (x >= 0 && x <= n && y >= 0 && y <= m) return true;
	return false;
}
void dfs(int x, int y) {
	if (x == n && y == m) {
		ans++;
		return;
	}
	for (int i = 0; i < 2; i++) {
		int nx = x + fx[i];
		int ny = y + fy[i];
		if (!vis[nx][ny] && bj(nx, ny)) {
			vis[nx][ny] = 1;
			dfs(nx, ny);
			vis[nx][ny] = 0;
		}
	}
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> m >> cx >>cy;
	vis[cx][cy] = 1;
	for (int i = 0; i < 8; i++) {
		int nx = cx + fcx[i];
		int ny = cy + fcy[i];
		if (bj(nx, ny)) vis[nx][ny] = 1;
	}
	if (vis[0][0] || vis[n][m]) {
		cout << 0;
		return 0;
	}
	vis[0][0] = 1;
	dfs(0, 0);
	cout << ans;
	return 0;
}

结果
请添加图片描述
一不小心TLE了,我不甘心,于是去找蒋壮大佬
请添加图片描述
显然这是可行的,虽然记忆化数组就是DP的状态,但我用的始终还是DFS有点扯我不管

然后我加上了记忆化搜索最后它
请添加图片描述
问题不大,终于不是TLE了,但是我调了好久始终不知道问题所在,正当我心灰意冷时我看到了一篇帖子,终于我的问题得到了解决,成功的AC了

思路

先标记所有马可能到的点

vis[cx][cy] = 1; 
for (int i = 0; i < 8; i++) {
	int nx = cx + fcx[i];
	int ny = cy + fcy[i];
	if (bj(nx, ny)) vis[nx][ny] = 1;
}

然后再进行搜索

ll dfs(ll x, ll y) {
	if (x == n && y == m) return 1;
	if (mem[x][y] != -1) return mem[x][y];
	ll sum = 0;
	for (int i = 0; i < 2; i++) {
		int nx = x + fx[i];
		int ny = y + fy[i];
		if (!vis[nx][ny] && bj(nx, ny)) {
			vis[nx][ny] = 1;
			sum += dfs(nx, ny);
			vis[nx][ny] = 0;
		}
	}
	return mem[x][y] = sum;
}

细节1

由于每次都要写边界条件太麻烦了,所以开了个判断边界的函数

bool bj(ll x, ll y) {
	return (x >= 0 && x <= n && y >= 0 && y <= m);
}

最后输出答案就可以了

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn = 25;
ll n, m, cx, cy;
ll vis[maxn][maxn], mem[maxn][maxn]; 
ll fx[2] = {1, 0}, fcx[8] = {-1, 1, -2, 2, 1, -1, 2, -2};
ll fy[2] = {0, 1}, fcy[8] = {-2, 2, -1, 1, -2, 2, -1, 1};
bool bj(ll x, ll y) {
	return (x >= 0 && x <= n && y >= 0 && y <= m);
}
ll dfs(ll x, ll y) {
	if (x == n && y == m) return 1;
	if (mem[x][y] != -1) return mem[x][y];
	ll sum = 0;
	for (int i = 0; i < 2; i++) {
		int nx = x + fx[i];
		int ny = y + fy[i];
		if (!vis[nx][ny] && bj(nx, ny)) {
			vis[nx][ny] = 1;
			sum += dfs(nx, ny);
			vis[nx][ny] = 0;
		}
	}
	return mem[x][y] = sum;
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> m >> cx >>cy;
	memset(mem, -1, sizeof mem); 
	vis[cx][cy] = 1; 
	for (int i = 0; i < 8; i++) {
		int nx = cx + fcx[i];
		int ny = cy + fcy[i];
		if (bj(nx, ny)) vis[nx][ny] = 1;
	}
	if (vis[0][0] || vis[n][m]) {
		cout << 0;
		return 0;
	}
	vis[0][0] = 1;
	ll ans = dfs(0, 0);
	cout << ans;
	return 0;
}

总结

这道题我把所有能踩的坑都踩了一便,但本质上题目还是比较简单的,希望大家在以后写题的时候不要犯我犯的错误

ps1 如果不懂什么是记忆化搜索的可以看oiwiki,写的很详细

ps2 希望大家可以关注我的洛谷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值