作为最具侵袭性的肿瘤,胰腺癌(PACA)的预后在过去十年中没有明显改善。基于解剖学的TNM分期不能准确识别对治疗敏感的患者,精准医学迫切需要一种理想的生物标志物。
1. 胰腺癌症共识基因特征的综合开发
作者的工作流程如图1所示。基于单变量Cox回归,作者从训练和9个测试队列中的15288个交集基因中筛选了32个CPG(图2B)。接下来,这32个CPG被进一步纳入作者的集成计划,以开发AIDPS。在PACA AU阵列训练队列中,作者通过十倍交叉验证应用了76种算法组合来构建预测模型,并计算了其余9个测试队列中每种算法的平均C指数。如图2A所示,选择平均C指数最高(0.675)的CoxBoost和生存SVM组合作为最终模型。根据AIDPS中包含的9个基因的表达文件,作者进一步计算了所有13个队列中每个样本的AIDPS得分(图2)。
图1 研究的工作流程
图2 人工智能衍生的预后标志(AIDPS)的构建和测试
2. AIDPS的一致预后价值
为了评估AIDPS的预后表现,作者根据中位数将PACA患者分为AIDPS高组和AIDPS低组。OS和RFS的Kaplan–Meier曲线表明,在PACA AU阵列训练队列中,高AIDPS组具有显著更长的生存期(OS中p<0.0001,RFS中p=0.012,图3A和B)。在去除批量效应后,结合10个队列(训练和9个测试队列)的Meta队列也表现出相同的趋势(均p<0.05,图3C和D)。此外,作者进一步纳入了几个重要的临床特征进行多变量Cox分析,结果表明,在PACA AU阵列队列中,AIDPS是OS和RFS的独立保护因素(OS的HR:0.593[0.504–0.697],RFS的HR=0.762[0.611–0.949],均p<0.05,图3E和F)。Meta队列中也发现了类似的结果(OS的HR:0.603[0.531–0.685]和RFS的HR:0.667[0.552–0.805],均p<0.05,图3G和H)。
图3 人工智能衍生预后标志(AIDPS)的生存分析和预测性能评估
补充图3-1 九个测试队列中人工智能衍生预后标志(AIDPS)的生存分析
补充图3-2 九个测试队列中人工智能衍生预后标志(AIDPS)的生存分析
补充图3-3 人工智能衍生预后特征(AIDPS)在九个测试队列中的预测性能
补充图3-4 人工智能衍生预后标志(AIDPS)在三个外部验证队列中的生存分析和预测性能