毕业设计:基于深度学习的火车票信息识别

本文介绍了基于OCR技术的火车票信息识别项目,探讨了课题背景、算法原理、模型训练过程,包括数据集的制作、实验环境设置以及模型训练步骤,旨在提高识别准确性和效率,降低人工成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

三、模型训练

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于OCR的火车票信息识别

设计思路

一、课题背景与意义

        目前国内火车站已全面实现购票实名制验证和上车前火车票机器验票。然而,火车票机器验票仅能验证票的合法性,需要通过人工方法确认持票人是否与身份证和票相符,这浪费了大量人力成本。同时,火车票机器验票具有劳动强度高和识别率低的缺点。通过将卷积神经网络与推荐方法相结合,提高了图像特征提取的准确度,但性能却明显下降。因此,如何改进图像识别技术算法,提高识别正确率的同时不影响性能,成为当前研究的热点。

二、算法理论原理

        对于火车票的重点识别项目,主要步骤包括以下几个方面:

毕业设计:基于深度学习的火车票信息识别

  • 图像预处理:对火车票图像进行预处理,包括去噪、图像增强、调整图像大小等操作,以便更好地提取票面信息。

  • 票面字符提取:使用图像处理和光学字符识别(OCR)技术,将火车票图像中的字符提取出来,包括车次、日期、出发站、到达站等关键信息。

  • 关键字符筛选:根据预先定义的规则和模式,对提取到的字符进行筛选,选择出与火车票识别相关的关键字符,如车次号码、日期等。

  • 火车票核心特征项提取:从关键字符中提取出火车票的核心特征项,如出发站、到达站、车次号码、座位号等。

  • 火车票识别扩张:通过对核心特征项进行进一步的识别和解析,可以扩展识别结果,如识别出具体的城市名称、车次类型、车票类型等详细信息。

        这些步骤结合了图像处理、字符识别和规则匹配等技术,可以实现对火车票的准确识别和信息提取。通过这些步骤,可以有效地获取火车票的关键信息,提高识别的准确性和效率。为减少计算量并提高运算速度,可以通过准确确定身份证号码所在区域来进行局部自适应阈值分割。身份证号码所在区域可以用一个矩形RECT((Lx, Ly), (Rx, Ry))表示,其中(Lx, Ly)为矩形的左上角坐标,(Rx, Ry)为矩形的右下角坐标。

通过以下步骤可以实现准确确定身份证号码所在区域:

  • 预处理:对火车票图像进行预处理,包括去噪、图像增强等操作,以便更好地提取身份证号码区域。
  • 文字检测:利用文字检测算法,如基于深度学习的文本检测模型,对火车票图像进行文字检测,以找到可能包含身份证号码的文本区域。
  • 区域定位:根据检测到的文本区域,计算矩形的左上角坐标(Lx, Ly)和右下角坐标(Rx, Ry),将其表示为一个矩形,框出身份证号码所在的区域。
  • 局部自适应阈值分割:在身份证号码区域内,应用局部自适应阈值分割算法,如基于局部像素均值的自适应阈值分割,将身份证号码从背景中分离出来,提高识别的准确性。

毕业设计:基于深度学习的火车票信息识别

        基于BP神经网络的字符识别是一种通过训练神经网络来学习字符的特征和模式,实现字符准确识别的方法。通过准备数据集、提取特征、设计网络结构、训练网络并进行测试评估,可以不断优化网络参数和提高识别准确性。这种方法具有较好的可扩展性和泛化能力,可以应对不同字符类型和复杂度的识别任务,扩充字符识别的应用范围和提高识别准确率。

        采用粒子群算法和神经网络算法的结合,对火车票识别问题具有重要的扩展作用。粒子群算法的全局搜索能力能够帮助神经网络在更大的参数空间中快速寻找最优解,进而改善神经网络算法收敛速度慢的问题。此外,粒子群算法的群体智能特性有助于避免神经网络陷入局部最优解,提高整体性能。

        通过粒子群算法优化神经网络的参数,可以进一步优化网络结构和权重,提高火车票识别的准确性和鲁棒性。粒子群算法通过在搜索空间中迭代更新粒子的位置和速度,找到最佳解决方案,并将其应用于神经网络的参数优化过程中。这种组合方法不仅能够加快收敛速度,还能够更好地探索参数空间,进一步提高识别的性能和准确度。

三、模型训练

3.1 数据集

        由于网络上缺乏合适的火车票信息识别数据集,我决定采取多种方式自制数据集。首先,我使用网络爬虫技术从各大火车票售卖网站收集了大量火车票图片和相关信息。然后,我利用手机进行现场拍摄,捕捉真实的车票场景和各种票据样本,包括不同字体、不同布局和不同质量的票据。这个自制的数据集将包含丰富多样的火车票图片和对应的标注信息,为火车票信息识别研究提供更准确、可靠的数据基础。我相信这个数据集的创造将为火车票信息识别领域的研究提供有力支持,并为相关技术的发展做出积极贡献。

毕业设计:基于深度学习的火车票信息识别

        在创建火车票信息识别自制数据集时,我还采用了数据增广技术来增加数据的多样性和鲁棒性。通过应用不同的数据增广方法,我能够生成更多的训练样本,提高模型的泛化能力。例如,我对采集到的火车票图片进行旋转、缩放、平移和镜像等操作,以模拟不同角度和尺度下的票据样本。此外,我还进行了光照变换、噪声添加和模糊处理等操作,以模拟现实中的图像变化和干扰。通过数据增广,我能够增加训练样本的数量和多样性,提高模型对各种情况下的火车票信息识别的准确性和稳健性。这种综合应用网络爬取和手机拍摄的数据,并结合数据增广技术,使得自制数据集更具代表性和实用性,为火车票信息识别的研究提供了更全面的支持。

毕业设计:基于深度学习的火车票信息识别

3.2 实验环境搭建

        电脑操作系统为Windows 7.0,搭载Intel Core i5处理器和8GB内存,同时使用Matlab 2015a作为软件平台。这样的配置提供了强大的计算能力和稳定的操作环境,适用于各种计算和数据处理任务。Windows 7.0作为操作系统提供了用户友好的界面和广泛的软件兼容性,使得系统易于使用和管理。Intel Core i5处理器的高性能和多核心架构,能够处理复杂的计算任务和并行计算。8GB的内存容量可以支持较大规模的数据处理和内存需求。

3.3 实验及结果分析

        在每个训练步骤(epoch)中,模型的训练过程一般按以下步骤进行:

  1. 输入数据:将训练数据输入到模型中。对于图像数据,可以通过批量加载图像和相应的标签来组成一个训练批次。

  2. 前向传播:通过前向传播计算模型的输出。输入数据经过模型的各层进行计算和变换,最终得到模型的预测输出。

  3. 计算损失:将模型的输出与真实标签进行比较,计算损失值(loss)。损失函数衡量了模型预测结果与真实标签之间的差异程度。

  4. 反向传播:使用反向传播算法计算损失函数对模型参数的梯度。梯度表示了损失函数对模型参数的变化敏感程度,通过梯度可以知道应该如何更新参数来减小损失。

  5. 参数更新:根据梯度和优化算法,更新模型的参数。常见的优化算法如随机梯度下降(SGD)、Adam等。优化算法根据梯度的方向和大小来更新模型参数,使得损失函数逐渐减小。

  6. 重复迭代:重复执行步骤2到步骤5,直到达到预定的训练轮次或模型收敛的条件。每次迭代都会更新模型的参数,使得模型逐渐适应训练数据,提高性能。

相关代码示例:

def preprocess_image(image):
    # 灰度化
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # 目标区域定位
    # 例如,使用边缘检测算法(如Canny边缘检测)和轮廓检测找到火车票的区域
    edges = cv2.Canny(gray, 50, 150)
    contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    ticket_contour = max(contours, key=cv2.contourArea)
    x, y, w, h = cv2.boundingRect(ticket_contour)
    ticket_region = image[y:y+h, x:x+w]

    # 二值化
    # 例如,使用自适应阈值法将图像二值化
    gray_ticket = cv2.cvtColor(ticket_region, cv2.COLOR_BGR2GRAY)
    _, binary_ticket = cv2.threshold(gray_ticket, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)

    # 倾斜校正
    # 例如,使用霍夫变换检测票据区域的倾斜角度,并进行校正
    lines = cv2.HoughLines(binary_ticket, 1, np.pi / 180, threshold=100)
    angles = [line[0][1] for line in lines]
    mean_angle = np.mean(angles)
    rotated_ticket = cv2.rotate(binary_ticket, cv2.ROTATE_90_CLOCKWISE)

    # 分割
    # 例如,使用轮廓检测和图像分割算法将身份证号码分割出来
    contours, _ = cv2.findContours(rotated_ticket, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    id_number_contour = max(contours, key=cv2.contourArea)
    x, y, w, h = cv2.boundingRect(id_number_contour)
    id_number_region = rotated_ticket[y:y+h, x:x+w]

    # 图像尺寸调整
    resized_id_number = cv2.resize(id_number_region, (32, 32))

    # 返回处理后的图片
    return resized_id_number

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值