毕业设计:基于深度学习的开放领域事件抽取系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 隐马尔科夫模型

2.2  CRFs 算法

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于python的开放领域事件抽取系统

设计思路

一、课题背景与意义

        在当今信息爆炸的时代,从大量的文本数据中提取有用的信息变得越来越重要。开放领域事件抽取是一项关键的研究课题,旨在从文本中自动提取出与特定领域相关的事件信息。这对于信息检索、知识图谱构建和智能应用开发都具有重要意义。开放领域事件抽取系统可以利用自然语言处理和机器学习技术,从大规模的文本数据中自动识别和抽取出事件信息,为用户提供准确、及时的信息获取和分析。

二、算法理论原理

2.1 隐马尔科夫模型

        隐马尔可夫模型(Hidden Markov Model,HMM)是一种用于建模序列数据的统计模型,它基于马尔可夫过程和观测数据之间的概率关系。HMM在许多领域中广泛应用,如语音识别、自然语言处理、生物信息学等。HMM由两个基本部分组成:状态序列和观测序列。状态序列表示隐藏的状态序列,而观测序列则表示与每个隐藏状态相关联的可见观测值序列。在HMM中,状态和观测之间存在概率转移和观测概率。HMM的基本假设是马尔可夫性质,即当前状态只依赖于前一个状态。具体来说,HMM假设在任何给定时间,当前状态的概率只与前一个状态有关,与更早的状态或观测无关。这个假设称为一阶马尔可夫性。

毕业设计:基于深度学习的开放领域事件抽取系统

​       隐马尔科夫模型(HMM)和马尔可夫模型(Markov Model)之间的主要区别在于观测数据的存在与否。马尔可夫模型假设我们可以直接观测到系统的状态,而HMM假设系统的状态是隐藏的,我们只能观测到由状态生成的观测数据。因此,HMM通过建立隐藏状态和观测数据之间的概率关系来描述数据的生成过程,而马尔可夫模型则直接描述状态之间的转移概率。换句话说,HMM在状态序列和观测序列之间引入了一个中间的隐藏层,而马尔可夫模型则没有隐藏层。

毕业设计:基于深度学习的开放领域事件抽取系统

​最大熵马尔科夫模型(MEMMs)是一种序列标注模型,结合了最大熵原理和马尔科夫模型的特点。它在序列标注任务中通过建模输入特征和输出标签之间的关系,允许更灵活的特征设计,并能捕捉上下文信息和特征依赖关系。MEMMs的训练包括特征定义和参数估计,通过最大似然估计或正则化技术来优化模型参数。一旦参数估计完成,MEMMs可以用于对新输入序列进行标注,通过动态规划算法找到最佳输出序列。MEMMs在序列标注问题中有广泛应用。

毕业设计:基于深度学习的开放领域事件抽取系统

2.2  CRFs 算法

        CRFs是一种概率图模型,用于序列标注和结构化预测。它通过定义特征函数来捕捉输入序列和输出标签之间的关系,并计算给定输入序列下的输出标签序列的条件概率。CRFs的训练包括特征定义和参数估计,通过优化模型参数来提高预测性能。一旦参数估计完成,CRFs可以用于对新的输入序列进行标注或预测。CRFs在序列标注和结构化预测任务中表现出色,广泛应用于自然语言处理和计算机视觉等领域。

毕业设计:基于深度学习的开放领域事件抽取系统

        CRFs的核心思想是建立输入序列和输出标签之间的条件概率分布。它通过定义一组特征函数来捕捉输入序列和输出标签之间的关系。这些特征函数可以是局部的,也可以是全局的,可以基于输入序列、输出标签或它们的组合。CRFs利用这些特征函数计算给定输入序列下的输出标签序列的条件概率。

        CRFs的训练过程涉及两个主要步骤:特征定义和参数估计。在特征定义中,需要选择与输入序列和输出标签相关联的特征函数。这些特征函数可以根据任务的特定需求进行设计,如字母形态、上下文信息等。在参数估计中,通常使用对数似然函数或正则化的最大化技术来优化模型参数。

相关代码示例:

ef define_features(input_sequence, output_sequence):
    features = []
    for i in range(len(input_sequence)):
        # 定义与输入序列和输出标签相关的特征函数
        feature = []
        feature.append("input_" + str(input_sequence[i]))
        feature.append("output_" + str(output_sequence[i]))
        features.append(feature)
    return features

# 参数估计
def estimate_parameters(features, true_labels):
    parameters = {}
    for feature, true_label in zip(features, true_labels):
        # 统计特征函数和标签的出现次数
        feature_label = tuple(feature + [true_label])
        if feature_label in parameters:
            parameters[feature_label] += 1
        else:
            parameters[feature_label] = 1
    return parameters

三、检测的实现

3.1 数据集

        由于缺乏现有的合适数据集,我决定自己收集文本数据并制作一个全新的数据集。我从各种开放数据源、新闻网站和社交媒体上收集了大量的文本数据,涵盖了不同领域和不同类型的文本。然后,我对这些文本数据进行了预处理,包括文本清洗、分词和标注等步骤,以准备数据用于模型训练和评估。

        在进行数据预处理后,我根据文本的主题和领域将数据进行了分类,并进行了数据的分割,确保训练集、验证集和测试集的合理划分。为了提高模型的泛化能力,我还进行了数据增强的方法,包括词语替换、句子重组和同义词替换等操作。通过这些操作,我生成了更多的训练样本,以增加数据的多样性和覆盖范围。

# 停用词列表
stop_words = set(stopwords.words('english'))

# 词形还原器
lemmatizer = WordNetLemmatizer()

# 分词和标注函数
def tokenize_and_tag(text):
    tokens = word_tokenize(text)  # 分词
    tokens = [lemmatizer.lemmatize(token.lower()) for token in tokens if token.isalnum()]  # 词形还原和过滤非字母数字字符
    tagged_tokens = nltk.pos_tag(tokens)  # 词性标注
    return tagged_tokens

# 数据增强函数
def augment_data(text):
    # 实现你的数据增强方法,例如词语替换、句子重组或同义词替换等

        为了进一步扩充数据集的规模和多样性,我还采用了一些数据扩充技术。其中包括基于词向量的生成模型,如Word2Vec和GloVe,用于生成具有类似语义的新词汇。我还使用了数据旋转和缩放等几何变换方法,以生成不同角度和尺度的数据样本。此外,我还应用了图像处理技术,如图像翻转、旋转和模糊等,对图像数据进行扩充。这些数据扩充技术有助于增加数据集的规模,并提供更多样化的数据样本,从而提高模型的鲁棒性和泛化能力。通过数据扩充,我能够更全面地评估和改进基于Python的开放领域事件抽取系统的性能。

3.2 实验环境搭建

        使用Python语言和Django Web框架实现CRFs的训练过程,可以通过定义特征函数和优化模型参数来构建一个序列标注的训练流程。在Django框架中,可以使用Python的科学计算库(如NumPy、Scipy)和机器学习库(如Scikit-learn)来实现CRFs的特征定义和参数估计。

毕业设计:基于深度学习的开放领域事件抽取系统

3.3 实验及结果分析

        基于序列标注CRF模型的命名实体抽取在处理具有噪声和碎片化特点的中文文本方面具有挑战性。选取CRF模型作为序列模型,通过两个阶段的工作实现命名实体的提取:第一阶段是命名实体识别CRF模型的训练,第二阶段是利用该模型从文本中抽取命名实体。该方法利用CRF模型的优势,应对微博文本中的复杂命名实体抽取任务。

        在CRF模型的训练集中,第一列是经过分词后的token,第二列是每个token的词性,第三列是命名实体的标签。分词和词性标注是基于NLPIR工具的结果。命名实体的标注过程包括对分词结果中的词语分块,并判断每个分块是否满足命名实体的特性,如是否是命名实体的开头、中间或结尾,以及是否不是命名实体。

        训练集的标注过程包括微博的分词和词性标注。分词结果会将命名实体切分为碎片,为了说明分词结果与待抽取的命名实体之间的关系,可以通过对比分词结果和需要抽取的命名实体内容来进行分析。

相关代码示例:

import nltk

def label_training_data(tokens, entity_mentions):
    labels = []
    for token in tokens:
        if token in entity_mentions:
            labels.append('B')  # 开始标记
        else:
            labels.append('O')  # 非实体标记
    return labels

weibo = "我爱北京天安门,天安门上太阳升"

# 示例分词结果
tokens = nltk.word_tokenize(weibo)

# 示例命名实体内容
entity_mentions = ["北京天安门"]

# 进行标注
labels = label_training_data(tokens, entity_mentions)

# 输出标注结果
for token, label in zip(tokens, labels):
    print(token, label)

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值