毕业设计:基于深度学习的图像风格迁移系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 生成对抗网络

2.2 循环生成对抗网络

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度学习的图像风格迁移系统

设计思路

一、课题背景与意义

        图像风格迁移是计算机视觉领域的一个重要问题,其旨在将一幅图像的风格特征应用于另一幅图像,从而创造出具有不同风格的图像。这项技术在艺术创作、图像编辑和设计等领域有着广泛的应用。基于深度学习的图像风格迁移系统通过结合深度学习算法和计算机视觉技术,能够自动学习并捕捉图像的风格信息,从而实现高质量的图像风格迁移。该系统的研究和应用将为数字媒体创意、图像处理和艺术设计等领域提供创新的工具和方法。

二、算法理论原理

2.1 生成对抗网络

        非跨域图像风格迁移模型的实现更简单,只需要一个预训练好的模型就可以将一个图像的风格迁移到另一张图像上,不再需要复杂的网络架构和训练过程。然而,非跨域图像风格迁移模型的生成过程可能需要较长的时间,特别是对于生成高分辨率的图像而言,所需时间更长。

        生成对抗网络(GAN)是生成模型领域最常用的模型之一,因为它可以生成高质量、逼真的样本。然而,GAN 在图像生成领域仍然存在一些限制,其中一个是可控性。对于特定任务,例如生成指定数字的手写数字图像,传统的GAN很难实现精确的控制。为了解决这个问题,研究人员提出了条件生成对抗网络(CGAN)。CGAN 在生成对抗网络的基础上进行改进,通过在训练生成器时传入条件信息,使其能够生成特定条件下的图像或数据。例如,在CGAN中,如果要求生成数字7的手写数字图像,可以传入数字7作为条件,让生成器只生成特定数字的图像。条件生成对抗网络通过引入条件信息,使得生成器可以根据条件生成图像,并且判别器可以对生成的图像和条件进行评估。训练CGAN模型的过程与训练普通的GAN类似,但在每次迭代时需要传入条件信息和相关的真实图像,以使生成器和判别器都能利用条件进行学习。

        DualGAN模型是一种用于图像风格迁移的生成对抗网络结构。它由两个生成器和两个判别器组成,分别负责将源域图像转换为目标域图像和将目标域图像转换为源域图像。这种相互耦合的结构使得模型能够同时学习两个方向的图像转换,并通过对抗训练和重构损失来提高生成器的性能和图像质量。通过在训练阶段利用真实图像和生成图像之间的对抗性比较,DualGAN模型能够实现更加准确和逼真的图像转换。在测试阶段,模型可以将输入的图像在两个方向上进行转换,实现源域到目标域和目标域到源域的图像转换。这使得DualGAN模型在图像处理和风格迁移任务中具有广泛的应用价值。

毕业设计:基于深度学习的图像风格迁移系统

2.2 循环生成对抗网络

        CycleGAN模型是一种用于跨域图像风格迁移的生成对抗网络。它由两个生成器网络和两个判别器网络组成,利用对抗性损失函数进行训练。与其他类似模型相比,CycleGAN模型不需要成对的图像样本,可以在两种图像之间进行风格迁移,即使它们在风格和数量上存在较大差异。为了保留原始样本的特征和信息,CycleGAN模型引入了循环一致性损失函数,使生成器网络能够学习到可控且有效的映射,生成高质量的样本并保持样本内容不变。这种模型在许多图像风格迁移任务中取得了出色的结果,并展示了更高的灵活性和处理能力。通过CycleGAN模型,可以进行各种跨域图像转换,如季节转换、物体属性转换等,为图像处理和创造性设计提供了强大的工具。

        CycleGAN模型的优势在于不需要成对的训练数据,能够在两个风格差异较大且数量不相等的图像域之间进行有效的风格迁移。它在许多任务中展现了出色的表现,如季节转换、物体属性转换等。通过CycleGAN模型,可以实现更灵活、高质量的图像风格转换,为图像处理、艺术创作和视觉效果等领域提供了有力的工具和技术。

毕业设计:基于深度学习的图像风格迁移系统

        在ResNet残差结构中,引入了二维反射填充。它用于在进行卷积或池化等操作之前对输入进行反射填充,从而扩展输入张量的尺寸。具体而言,通过二维反射填充,输入张量的边缘会被反射填充,以保持输入张量的尺寸不变。填充的大小由参数padding控制。例如,当padding=1时,在输入张量的上下左右边缘各填充1个元素。当padding=2时,在输入张量的上下左右边缘各填充2个元素。这样,在进行卷积操作时,可以在输入张量的边缘进行计算,而不会忽略边缘像素。

毕业设计:基于深度学习的图像风格迁移系统

        判别器网络采用了马尔科夫性的判别器结构,即PatchGAN。PatchGAN是由Isola等人提出的结构。与传统的生成对抗网络中的判别器只输出一个评价值(表示输入样本为真实样本的概率)不同,PatchGAN将输入映射成一个N×N的patch(矩阵)。矩阵中的每个元素表示对应patch为真实样本的概率,将所有元素求均值作为判别器网络的最终输出。这个矩阵可以追溯到原始图像中的某个位置,从而了解该位置对最终输出结果的影响。

        PatchGAN的设计优点在于它输出一个矩阵,最终结果求平均,考虑到了图像不同部分对判别的影响,类似于考虑多人建议后做出决策的过程。相比于传统的生成对抗网络中判别器输出的单一数值,PatchGAN能够更好地捕捉不同分辨率的图像特征。然而,PatchGAN结构使用感受域机制使得判别器网络只关注每个小块区域,可能忽略了全局的信息,对判别器网络的性能可能会产生影响。

毕业设计:基于深度学习的图像风格迁移系统

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适的数据集,我决定自己进行网络爬取,收集了大量具有不同风格的图像样本来构建一个全新的数据集。通过编写网络爬虫程序,我能够从各种在线图像库、艺术网站和社交媒体上获取具有多样风格的图像,并对这些图像进行标注和分类。这个自制的数据集包含了风景、人物、动物和抽象等不同主题的图像,并覆盖了多种艺术风格,包括印象派、抽象表现主义、立体派等。通过自制数据集,我能够获得更真实、多样的图像数据,这将为我的研究提供更准确、可靠的基础。

毕业设计:基于深度学习的图像风格迁移系统

        通过应用图像处理技术和数据增强方法,我对已有的图像样本进行了变换、旋转、缩放和翻转等操作,生成了更多的训练样本。此外,我还引入了噪声、模糊效果和颜色变换等技术,进一步扩充了数据集的风格和变化。通过数据扩充,我能够增加训练数据的数量,提高模型的泛化能力,并减轻模型对于特定风格的依赖性。

毕业设计:基于深度学习的图像风格迁移系统

3.2 实验环境搭建

3.3 实验及结果分析

        实验中采用了CycleGAN模型,并使用了Adam优化算法作为优化器。Adam优化算法具有自适应学习率、偏差校正和对稀疏梯度的支持等优点,能够平衡速度和准确度,并提高训练的稳定性。实验中的其他参数设置包括批量大小为1、总Epoch数量为200,并采用学习率衰减策略。这些参数设置旨在保证一致的优化器选择和适当的学习率调整,以确保模型的有效训练和结果的优化。通过这些实验参数的设置,可以得到较好的CycleGAN模型的训练结果。

相关代码示例:

import torch
import torch.nn as nn

class CBAM(nn.Module):
    def __init__(self, channels, reduction=16):
        super(CBAM, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Linear(channels, channels // reduction)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Linear(channels // reduction, channels)
        self.sigmoid = nn.Sigmoid()
        
    def forward(self, x):
        avg_out = self.avg_pool(x)
        max_out = self.max_pool(x)
        avg_out = torch.flatten(avg_out, 1)
        max_out = torch.flatten(max_out, 1)
        avg_out = self.fc2(self.relu(self.fc1(avg_out)))
        max_out = self.fc2(self.relu(self.fc1(max_out)))
        out = avg_out + max_out
        out = self.sigmoid(out)
        out = out.unsqueeze(2).unsqueeze(3)
        out = out.expand_as(x)
        out = out * x
        return out

class Discriminator(nn.Module):
    def __init__(self, input_channels, use_cbam=True):
        super(Discriminator, self).__init__()
        self.use_cbam = use_cbam
        self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=4, stride=2, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
        self.bn2 = nn.BatchNorm2d(128)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
        self.bn3 = nn.BatchNorm2d(256)
        self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1)
        self.bn4 = nn.BatchNorm2d(512)
        self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)
        self.cbam = CBAM(512)
        
    def forward(self, x):
        x = nn.LeakyReLU(0.2)(self.conv1(x))
        x = nn.LeakyReLU(0.2)(self.bn2(self.conv2(x)))
        x = nn.LeakyReLU(0.2)(self.bn3(self.conv3(x)))
        if self.use_cbam:
            x = self.cbam(x)
        x = nn.LeakyReLU(0.2)(self.bn4(self.conv4(x)))
        x = self.conv5(x)
        return x

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 25
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值