目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的矿井煤仓传送带异物检测系统研究
设计思路
一、课题背景与意义
煤矿生产过程中,煤仓传送带是重要的物料输送设备,然而,传送带上可能夹杂异物,如金属、塑料等,这些异物不仅影响煤炭的质量,还可能导致设备故障,甚至引发安全事故。传统的人工检查方式效率低下且容易遗漏,基于深度学习的自动检测技术能够提高异物检测的效率和准确性,确保煤矿生产的安全与稳定。
二、算法理论原理
2.1 卷积神经网络
卷积神经网络是一种深度学习模型,核心思想源于生物视觉系统,特别是对视觉皮层的研究。与传统的全连接神经网络不同,CNN通过卷积层提取局部特征,利用权重共享和空间不变性显著降低了参数数量,提高了模型的训练效率。CNN通常由多个卷积层、激活函数、池化层和全连接层组成。卷积层通过滑动卷积核对输入图像进行处理,提取出特征图,而池化层则负责下采样,减少特征图的尺寸和计算量,保留重要的特征信息。
在训练过程中,CNN通常使用反向传播算法进行参数优化。通过最小化损失函数,CNN能够自动学习到最适合特定任务的特征表示。卷积神经网络还广泛应用于迁移学习,即在一个任务上训练好的模型可以被用于另一个相关任务,通过微调实现较好的性能。这种方法极大地提高了模型的实用性和适应性。
2.2 YOLOv5算法
YOLOv5的组成结构主要包括三个关键部分:Backbone、Neck和Head。Backbone部分负责特征提取,采用CSPDarknet53网络结构,通过卷积操作提取输入图像的深层特征,同时有效减少参数量和计算量。Neck部分实现特征融合,使用FPN和PAN等技术,将不同层级的特征进行整合,以便更好地捕捉目标的多尺度信息。最后,Head部分进行目标检测,输出目标框的位置、类别和置信度,采用新的预测策略如Anchor-Free和Class Agnostic,使得模型在检测多目标时更加高效和准确。
YOLOv5 的主要流程包括三个阶段:特征提取、特征融合与目标检测。在 Backbone 部分,CSPDarknet53 作为主干网络,有效减少参数与计算量,提升效率。在 Neck 部分,采用 FPN 特征融合方法,结合 SPP和 PAN提取与融合不同层级特征,从而提高检测精度。在目标检测过程中,YOLOv5 进行预测目标框、类别和置信度的计算。预测目标框时,采用“Anchor-Free”方法,不需预先定义锚点,通过预测目标框的中心点和宽高确定位置与大小。对于目标类别,采用“Class Agnostic”方法,同时预测多个目标类别,提升算法效率。计算置信度时,使用“CIoU loss”处理目标框重叠情况,进一步提升检测精度。
YOLOv5 还引入了“AutoAnchor”训练策略,自动学习与更新锚点的大小和形状,适应不同目标。具体过程包括初始化锚点、计算 IoU、更新锚点、计算损失及重复训练,直至达到预定训练次数或精度要求。通过这些步骤与多种数据增强方法,YOLOv5 提升了数据多样性与算法鲁棒性。
三、检测的实现
3.1 数据集
图像采集选择了两种采集方式:自主拍摄和互联网采集。自主拍摄通过在不同的环境和条件下拍摄传送带上的物品,确保数据集中涵盖各种类型的异物。通过互联网采集获取相关的图像,确保能够全面反映传送带异物的各种可能性。使用专业的标注工具LabelImg,对收集到的图像进行详细标注。标注过程中,要为每个异物绘制边界框,并标记其类别和属性。在划分数据集时,通常将标注完成的数据集按照一定比例划分为训练集、验证集和测试集,通常采用70%用于训练,20%用于验证,10%用于测试。为了进一步增强数据集,采用数据扩展技术,包括随机裁剪、旋转、缩放、颜色变化等,对训练数据进行处理。
3.2 实验环境搭建
深度学习框架为构建、训练、优化和推理深度神经网络提供了必要的基础工具,使开发者能够更高效地进行相关工作。这些框架不仅简化了复杂的计算过程,还提供了丰富的功能和灵活的接口,帮助开发者快速实现各种深度学习算法。在众多深度学习框架中,PyTorch因其高度的扩展性和可移植性而受到广泛欢迎,尤其在学术研究和工业应用中表现出色。它的动态计算图特性使得模型的调试和修改变得更加直观和方便,同时,PyTorch拥有一个活跃的开发者社区,提供了大量的资源和支持,极大地推动了深度学习的研究和应用。
3.3 实验及结果分析
模型训练之前,首先需要准备好高质量的数据集。这一步骤包括图像的采集、标注和划分。图像采集可以通过自主拍摄和互联网收集,确保数据集包含多种类型的异物(如金属、塑料、木材等)以及不同的环境和光照条件。接下来,使用标注工具对图像进行标注,确保每个异物都有准确的边界框和类别标签。最后,将数据集划分为训练集、验证集和
import os
from sklearn.model_selection import train_test_split
# 假设我们有一个包含异物图像和标签的列表
images = ['image1.jpg', 'image2.jpg', 'image3.jpg', ...]
labels = ['label1', 'label2', 'label3', ...]
# 划分数据集
train_images, test_images, train_labels, test_labels = train_test_split(images, labels, test_size=0.3, random_state=42)
对于传送带异物检测,YOLO系列模型,如YOLOv5,采用预训练的YOLOv5模型不仅可以加速训练过程,还能提高检测精度。需要根据数据集的特点对模型进行配置,包括设置输入图像的尺寸、类别数和训练参数。使用训练集对模型进行训练,并在验证集上进行性能评估。训练过程中,选择适当的损失函数和优化器,定期保存模型的检查点,以防止训练中可能出现的问题。
from models.yolo import Model
# 加载预训练模型并进行配置
model = Model('yolov5s.yaml') # 选择YOLOv5s作为基础模型
model.nc = 5 # 设置类别数,例如5种异物类型
model.img_size = 640 # 设置输入图像尺寸
训练完成后,需要对模型进行评估,以了解其在测试集上的表现。通过计算精度、召回率和F1分数等指标,评估模型的性能。如果评估结果不理想,可以考虑调整模型的超参数、增加数据集的样本量或使用数据增强技术,以进一步提升模型的检测效果。将训练好的模型进行部署,以便在实际应用中进行煤仓传送带异物的自动检测。可以将模型集成到一个实时监控系统中,通过摄像头实时捕捉传送带图像并进行检测,或将模型应用于静态图像的批量处理。
from val import val
# 进行模型评估
val(data='data.yaml', # 数据集配置文件
weights='best.pt', # 训练过程中保存的最佳权重文件
img_size=640) # 设置输入图像尺寸
实现效果图样例:
创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!