
深度学习篇
文章平均质量分 90
Ronin-Lotus
这个作者很懒,什么都没留下…
展开
-
程序代码篇---Pytorch实现LATM+APF轨迹预测
本文探讨了如何结合LSTM(长短期记忆网络)和APF(人工势场法)来提升无人驾驶系统的轨迹预测与路径规划能力。LSTM通过其门控机制捕获车辆历史运动的时序特征,精准预测未来轨迹;APF则基于实时环境信息生成无碰撞路径,通过目标引力和障碍物斥力动态调整路径。两者的深度融合能够整合历史数据与当前环境,生成平滑、安全的行驶轨迹,有效应对复杂道路场景(如雨雾天气、交通拥堵等)。文章还提供了基于PyTorch的LSTM模型实现和APF算法,展示了如何通过多模态融合优化无人驾驶决策。原创 2025-05-23 00:13:41 · 765 阅读 · 0 评论 -
深度学习篇---LSTM&ADF轨迹预测
本文介绍了两种轨迹预测方法:LSTM(长短期记忆网络)和APF(人工势场法)。LSTM通过门控机制处理时间序列数据,能够捕捉长期依赖关系,广泛应用于行人和自动驾驶车辆的轨迹预测,但其计算复杂度高且对数据要求严格。APF则通过虚拟力场建模环境,实时性强且计算量小,适用于船舶和无人驾驶车辆的避障规划,但容易陷入局部极小值且对参数敏感。两种方法各有优缺点,适用于不同的应用场景。原创 2025-05-21 00:17:34 · 777 阅读 · 0 评论 -
深度学习篇---姿态检测实现
坐姿检测可以通过**传统机器学习**或**深度学习**方法实现。下面我将详细介绍两种方法,并提供相应的Python实现代码。原创 2025-05-10 18:43:17 · 816 阅读 · 0 评论 -
深度学习篇---模型权重变化与维度分析
通过增加网络深度和引入高级技术,模型可以解决更复杂的问题(如图像分类、自然语言处理)。理解权重的动态变化和维度传递,是设计高效神经网络的关键。本文简单介绍了神经网络模型权重变化与维度分析的相关知识。模型定义:Linear(1,1) 创建输入输出均为 1 维的全连接层,权重 (1,1),偏置 (1,)。维度匹配:权重维度确保矩阵乘法可行(如 (n,m) 与 (m,batch) 相乘)。问题 解决方案 代码示例。原创 2025-04-29 18:38:39 · 1779 阅读 · 0 评论 -
深度学习篇---抽样
抽样是将连续时间信号转换为离散时间信号的关键过程,其数学本质是用脉冲序列对连续信号进行调制。原创 2025-04-28 13:04:29 · 983 阅读 · 0 评论 -
图像处理篇---信号与系统的应用
图像和视频作为典型的时空信号,与信号与系统理论有着深刻的联系。原创 2025-04-28 12:42:04 · 1257 阅读 · 0 评论 -
【KWDB 创作者计划】_深度学习篇---数据获取
在深度学习竞赛(如Kaggle、天池等)和研究项目中,获取大量高质量数据是成功的关键因素之一。以下是系统化的数据获取方法和资源大全。原创 2025-04-25 12:11:25 · 1127 阅读 · 0 评论 -
【KWDB 创作者计划】_深度学习篇---向量指令集
向量指令集(如SIMD:Single Instruction, Multiple Data)通过并行化数据计算显著加速机器学习任务。其核心原理是利用硬件层面的并行性,在单个时钟周期内对多个数据执行相同操作。SIMD:单指令流多数据流。一个控制器控制多个处理器,同时对一组数据(数据向量)进行处理中的每一个分别执行相同的操作,实现空间上的并行的技术。原创 2025-04-23 21:08:14 · 1146 阅读 · 0 评论 -
【KWDB 创作者计划】_深度学习篇---归一化&反归一化
本文简单介绍了归一化和反归一化。归一化和反归一化是数据预处理中的关键技术,尤其在机器学习和数据挖掘领域广泛应用。通过合理应用归一化和反归一化,能显著提升模型性能并确保结果可解释性。实际应用中需根据数据分布和模型需求选择方法。归一化是将数据按比例缩放至特定范围(如[0, 1]或[-1, 1]),消除量纲差异,提升模型收敛速度和精度。将归一化后的数据还原至原始量纲,用于结果解释或反向计算。原创 2025-04-23 19:58:08 · 747 阅读 · 0 评论 -
【KWDB 创作者计划】_上位机知识篇---SDK
软件开发工具包)是开发者用于构建特定平台、硬件或服务的应用程序的一站式工具集合。它包含开发所需的核心工具、接口、文档和示例代码,大幅降低开发门槛。SDK是开发者与复杂系统(硬件、平台、服务)之间的桥梁。通过提供标准化工具和接口,它让开发者能专注于业务逻辑,而非底层细节。无论是调用一颗AI加速芯片,还是接入微信小程序,SDK都是现代软件开发不可或缺的“瑞士军刀”。原创 2025-04-17 22:42:57 · 993 阅读 · 0 评论 -
【KWDB 创作者计划】_深度学习篇---松科AI加速棒
松科 TPU是一款自主的、高性能的、通用深度学习加速棒。同时支持X86 平台、ARM平台、MIPS 平台、Loong Arch 平台等主流平台的运行。内置CNN 网络加速引擎,可以实现高性能、低功耗的 CNN 网络模型的加速。松科 TPU 架构设计先进,可以高效完成多路动态视频流的人脸检测、跟踪、特征提取和识别,高效支持墨镜、口罩、性别、年龄等属性检测。提供强大的可编程运算能力,满足CNN 算法实时性处理的运算要求。原创 2025-04-17 22:17:37 · 833 阅读 · 0 评论 -
【KWDB 创作者计划】_深度学习篇---常见卷积核
卷积核(Convolution Kernel)是卷积神经网络(CNN)中的核心组件,用于**提取图像或特征图的局部特征。在CNN中,卷积核的权重通常通过训练自动学习,可能包含复杂的非线性模式。原创 2025-04-16 01:48:59 · 544 阅读 · 0 评论 -
深度学习篇---大模型ERNIE Bot
本文简单介绍了大模型ERNIE Bot的技术框架与核心创新、使用等相关知识。原创 2025-04-08 04:11:11 · 2224 阅读 · 0 评论 -
上位机操作篇---Prompt使用技巧&Json生成的核心优势
本文简答介绍了Prompt的使用技巧以及json生成的核心优势。原创 2025-04-08 03:02:26 · 795 阅读 · 0 评论 -
深度学习篇---LSTM+Attention模型
本文简答介绍了LSTM和Attention模型的使用以及一系列相关知识。遗忘门:决定从细胞状态中丢弃哪些信息输入门:确定哪些新信息将被存储到细胞状态输出门:基于细胞状态确定输出什么。原创 2025-04-07 19:32:09 · 1579 阅读 · 0 评论 -
深度学习篇---Prophet时间序列预测工具
本文简单介绍了Prophet时间预测工具的使用等相关知识。Prophet是Facebook核心数据科学团队开发的一个开源时间序列预测工具,于2017年发布。原创 2025-04-07 18:51:09 · 1117 阅读 · 0 评论 -
深度学习篇---LSTM&FFT&GCT
LSTM(长短期记忆网络)结合注意力机制、FFT(快速傅里叶变换)和GCT(门控上下文变换)模块是一种针对时序数据建模的混合模型架构,其核心思想是融合时序建模、频域特征提取、动态权重调整和多尺度注意力机制。原创 2025-04-06 06:54:43 · 1067 阅读 · 0 评论 -
深度学习篇---模型训练(1)
本文再网络结构(1)的基础上,完善数据读取、数据增强、数据处理、模型训练、断点训练等功能。原创 2025-04-05 00:41:05 · 1068 阅读 · 0 评论 -
深度学习篇---网络分析(1)
这个网络结构是一个改进的卷积神经网络(CNN),专为一维数据(如时间序列、音频信号或文本序列)设计,结合了残差学习(ResNet的思想)和深度卷积特征提取。原创 2025-04-05 00:25:42 · 1088 阅读 · 0 评论 -
深度学习篇---num_works选择
在 PyTorch 的 DataLoader 中,num_workers参数控制数据加载时的并行子进程数量。合理选择该参数可以显著提升数据加载效率,避免训练瓶颈。默认推荐:从开始,逐步增加并观察训练速度。原创 2025-04-04 04:10:35 · 1201 阅读 · 0 评论 -
深度学习篇---模型训练早停机制
早停机制(Early Stopping)是深度学习中防止模型过拟合的核心正则化技术之一,其核心思想是通过监控验证集性能,在模型开始过拟合前终止训练。早停机制通过监控验证集性能平衡欠拟合与过拟合,是实际训练中必备的优化策略。合理设置 patience 和 min_delta,结合模型保存与学习率调度,可显著提升训练效率和模型泛化能力。原创 2025-04-04 03:56:49 · 1446 阅读 · 0 评论 -
深度学习篇---os.path模块
本文简单介绍了os.path 模块以及其在深度学习数据处理的使用。核心工具:os.path.join() 是跨平台路径操作的核心,结合 os.makedirs()、os.path.exists() 等函数,可确保路径安全和兼容性。原创 2025-04-03 05:26:37 · 1200 阅读 · 0 评论 -
深度学习篇---网络结构
本文简单介绍了,Pytorch框架下的一款深度学习网络框架的配置。原创 2025-04-01 01:41:00 · 1444 阅读 · 0 评论 -
深度学习篇---模型参数调优
本文简单介绍了深度学习中的epoch、batch、learning-rate参数大小对模型训练的影响,以及怎样进行适当调优。原创 2025-03-30 15:12:40 · 1500 阅读 · 0 评论 -
深度学习篇---模型GPU训练
本文简单介绍了paddlepaddle、pytorch框架下使用GPU进行模型训练的步骤以及注意事项,同时介绍了Openmp以及相应问题的解决。原创 2025-03-30 14:51:55 · 1355 阅读 · 0 评论 -
深度学习篇---模型训练评估参数
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。定义:预测为正例的样本中,真正为正例的比例。计算公式为:其中TP(True Positive)表示真正例,即实际为正例且被预测为正例的样本数量;FP(False Positive)表示假正例,即实际为负例但被预测为正例的样本数量。定义:实际为正例的样本中,被预测为正例的比例。原创 2025-03-29 02:50:16 · 1774 阅读 · 0 评论 -
深度学习篇---paddleocr正则化提取
本文简单介绍了paddleocr中使用的到的正则化。# 定义正则表达式模式# 快递单号:通常是数字和字母的组合,长度可能在 10 到 20 位左右# 手机号:以 1 开头,后面跟 10 位数字# 姓名:简单假设为 2 到 4 个汉字------express_pattern = r'[A-Za-z0-9]{10,20}':定义快递单号的正则表达式模式,匹配由 10 到 20 位的字母(大小写均可)和数字组成的字符串。原创 2025-03-28 12:42:21 · 583 阅读 · 0 评论 -
深度学习篇---paddleocr进阶
本文简单介绍了paddleocr提升识别准确率的方法以及代码实现。自定义词典:在中按行加入专用词汇(如医学术语)。适用场景:专用场景(如古籍、手写体)需微调模型。原创 2025-03-28 12:21:08 · 1373 阅读 · 0 评论 -
深度学习篇---数据操作
在机器学习和深度学习中,数据处理是核心步骤之一。Python 提供了丰富的工具库(如等)用于读取、操作和预处理数据。操作类型 工具/库 核心函数/方法CSV 读取 pandas pd.read_csv()矩阵操作 numpy np.array(), reshape(), dot()数据清洗 pandas dropna(), fillna(), drop_duplicates()原创 2025-03-26 19:15:40 · 916 阅读 · 0 评论 -
深度学习篇---断点重训&模型部署文件
在框架中,断点重训(恢复训练)和模型部署需要保存不同类型的文件用途 文件类型 动态图(DyGraph) 静态图(Static Graph)断点重训模型参数 .pdparams.pdparams或 .ckpt优化器状态.pdopt.pdopt或 .ckpt元信息自定义(如 .pdmeta 或 .pkl) 自定义模型部署模型结构.pdmodelmodel模型参数.pdiparamsparams。原创 2025-03-26 18:57:26 · 1614 阅读 · 0 评论 -
深度学习篇---回归&分类任务的损失函数
本文简单介绍了深度学习中常用的损失函数。比如用于回归任务的交叉熵损失、Focal Loss损失;用于分类任务的MAE\MSE\Huber损失等。分类任务:优先选择交叉熵损失,处理不平衡数据时使用 Focal Loss。原创 2025-03-25 13:59:28 · 1319 阅读 · 0 评论 -
深度学习篇---卷积网络结构
本文简单介绍了CNN卷积神经网络与残差块实现回归任务的代码以及接下来的优化方案。原创 2025-03-25 13:14:13 · 1273 阅读 · 0 评论 -
深度学习篇---PaddleDetection&PaddleOCR
本文简单介绍了PaddleDetection和PaddleOCR相结合的示例代码,通过两个PaddlePaddle框架下的工具包结合使用同时达到图像识别和文本识别的功能。原创 2025-03-24 15:03:01 · 946 阅读 · 0 评论 -
深度学习篇---PaddleOCR
本文简单介绍一下PaddleOCR这款百度旗下的PaddlePaddle框架下的文本识别工具包。原创 2025-03-24 14:38:31 · 1265 阅读 · 0 评论 -
程序代码篇---SQLite数据库存储信息
本文简单介绍了SQLite的使用,存储信息并进行实时更新。原创 2025-03-23 22:39:40 · 758 阅读 · 0 评论 -
矩阵篇---矩阵的应用
矩阵作为线性代数的核心工具,广泛用于描述系统关系、变换和计算。以下分领域详细介绍其应用(包括,电路、人工智能、图像识别、机器人等)矩阵的应用几乎渗透到所有科学与工程领域物理系统建模:电路、力学、量子力学。数据科学:深度学习、图像处理、推荐系统。控制与优化:卡尔曼滤波、投资组合。几何与图形:3D变换、机器人运动学。其核心价值在于通过线性代数统一描述复杂系统的关系,并利用矩阵运算的**高效性(如并行计算)**解决实际问题。理解矩阵的应用场景,有助于在不同领域中选择合适的数学工具。原创 2025-03-22 12:09:43 · 1675 阅读 · 0 评论 -
深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
本文简单介绍了对角矩阵\逆对角矩阵、矩阵的秩、奇异矩阵等线性代数中的矩阵知识,同时关乎到人工智能。对角矩阵是主对角线以外的元素全为零的方阵,形式为:若所有对角元素非零,则称为可逆对角矩阵。矩阵的秩是其行(或列)向量中极大线性无关组的数目,反映矩阵的“信息量”。行列式为零的方阵,不可逆,对应线性方程组无唯一解。对角矩阵简化计算并表征独立变换,广泛用于优化和变换域分析。矩阵的秩揭示数据内在维度,是压缩与建模的核心工具。奇异矩阵标志系统冗余或不稳定,需通过正则化或结构调整处理。这些概念共同构建了。原创 2025-03-22 00:30:37 · 1370 阅读 · 0 评论 -
深度学习篇---深度学习中的范数
本文介绍了一系列范数的定义、计算、使用。比如L1\L2\L∞\Frobenius范数(矩阵L2范数),用于正则化(防止过拟合)、损失函数。向量中非零元素的数量向量元素绝对值之和。定义:向量元素平方和的平方根。向量元素绝对值的最大值。定义:向量元素绝对值的p次方和的1/p次幂。定义:矩阵元素平方和的平方根。定义:矩阵奇异值之和。矩阵的最大奇异值。L1/L2范数:基础正则化工具,分别诱导稀疏性和平滑性。原创 2025-03-21 21:03:47 · 972 阅读 · 0 评论 -
深度学习篇---分类任务图像预处理&模型训练
本文简单介绍了pytoch、paddlepaddle框架下的分类任务的图像预处理、模型训练以及模型保存的流程。# 初始化数据集路径和标签self.classes = os.listdir(data_dir) # 获取类别文件夹(如class1, class2)self.image_paths = [] # 存储所有图像路径self.labels = [] # 存储对应标签# 遍历子文件夹,构建路径和标签的映射self.transform = transform # 数据增强/归一化操作。原创 2025-03-16 09:41:56 · 1684 阅读 · 0 评论 -
图像处理篇---图像预处理
图像预处理是机器学习和计算机视觉任务中至关重要的一环,其核心目的是通过对原始图像进行优化和调整提升模型性能、降低噪声干扰、增强关键特征,并适应模型的输入要求。原创 2025-03-16 09:04:58 · 2592 阅读 · 2 评论