- 二重积分的换元法:将原本对x,y的积分变量都换元为u,v的函数,换元后积分区域也会发生变化。
- 注:积分函数变化后函数后要乘一个雅可比行列式的绝对值。
3.例七:(1)因为积分函数比较复杂,设u=y-x、v=y+x(换元)(2)将上述两式联立得出x=(v-u)/2、y=(u+v)/2(3)用x、y的式子算出雅可比行列式(4)用原来的积分区域来推出现在的积分区域。(5)然后依靠上述条件来改变原有积分函数,算出结果。
4.二重积分的换元法适用条件:(1)积分函数较为复杂(2)积分区域不好表示(3)函数图像为椭圆(化为极坐标形式,比圆的换元多乘了一个a)