超强换元法,二重积分计算的利器(雅可比行列式超通俗讲解)

二重积分计算是个老大难,有的题目计算过程极其复杂,直角坐标和极坐标换元已不足以应对“复杂路况”,这个时候怎么办?整上一手超强换元法,出奇制胜,本文带你一窥究竟。
首先来回顾下定积分的换元过程:
I = ∫ a b f ( x ) d x I=\int_{a}^{b}f(x)dx I=abf(x)dx ,令 x = g ( t ) x=g(t) x=g(t) ,则: I = ∫ g − 1 ( a ) g − 1 ( b ) f ( g ( t ) ) d g ( t ) I=\int_{g^{-1}(a)}^{g^{-1}(b)}f(g(t))dg(t) I=g1(a)g1(b)f(g(t))dg(t)
最终为: I = ∫ g − 1 ( a ) g − 1 ( b ) f ( g ( t ) ) g ′ ( t ) d t I=\int_{g^{-1}\left( a \right)}^{g^{-1}\left( b \right)}f(g\left( t \right))g'\left( t \right)dt I=g1(a)g1(b)f(g(t))g(t)dt

可见换元要换三个东西(重点提示):
​1.积分上下限;
2.被积函数;
3.积分变量

所以我们类比到二重积分的换元过程:
I = ∫ c d ∫ a b f ( x , y ) d x d y I=\int_{c}^{d}\int_{a}^{b}f(x,y)dxdy I=cdabf(x,y)dxdy ,令 x = x ( u , v ) , y = y ( u , v ) x=x(u,v),y=y(u,v) x=x(u,v)y=y(u,v) ,换元之后为:
I = ∫ g h ∫ e f f ( x ( u , v ) , y ( u , v ) ) d x ( u , v ) d y ( u , v ) I=\int_{g}^{h}\int_{e}^{f}f(x(u,v),y(u,v))dx(u,v)dy(u,v) I=gheff(x(u,v),y(u,v))dx(u,v)dy(u,v)
可见,积分上下限和被积函数好表示(积分上下限通过画图可以表示出来,被积函数直接带入表达式即可)。所以关键的难点就落到了 d x ( u , v ) d y ( u , v ) dx(u,v)dy(u,v) dx(u,v)dy(u,v) 如何表达成 d u d v dudv dudv 上面,而这即是找它们之间的关系,怎么找?这就涉及到了雅可比行列式。

什么是雅可比行列式:

首先我们知道, d x d y dxdy dxdy d u d v dudv dudv 都表示微元面积,所以我们要找它们之间的关系,无非就是找换元前后微元面积的关系。
将微元取出后并放大p.s.换元后微元边界不一定是直的,但是由于其很小,所以可以“以直代曲”

为了更清楚的了解换元前后微元面积的关系,我们取出左下角坐标为 ( u 0 , v 0 u_{0},v_{0} u0,v0) 的一个微元和与其对应的微元一起放大,如下图:
在这里插入图片描述

由于我们经过了 x = x ( u , v ) , y = y ( u , v ) x=x(u,v),y=y(u,v) x=x(u,v)y=y(u,v) 这个换元。所以坐标系中的点 ( u 0 , v 0 u_{0},v_{0} u0v0) 就变成另一个坐标系里面的 ( x ( u 0 , v 0 ) , y ( u 0 , v 0 ) ) (x(u_{0},v_{0}),y(u_{0},v_{0})) (x(u0,v0),y(u0,v0)) ,其他的点类似。于是就得到了上图右边微元的坐标。
接下来就可以求它们的面积了,根据平行四边形面积公式: s = ∣ a ∣ ∣ b ∣ ∣ s i n θ ∣ = ∣ a × b ∣ s=|a||b||sin\theta|=|a\times b| s=a∣∣b∣∣sinθ=a×b ,所以有:
d A = ∣ u × v ∣ = d u d v , d A 1 = ∣ l × m ∣ dA=|u\times v|=dudv , dA_{1}=|l\times m| dA=u×v=dudv,dA1=l×m
其中 l = ( x ( u 0 , v 0 + d v ) − x ( u 0 , v 0 ) , y ( u 0 , v 0 + d v ) − y ( u 0 , v 0 ) ) l=\left( x(u_{0},v_{0}+dv)-x(u_{0},v_{0}),y(u_{0},v_{0}+dv)-y(u_{0},v_{0}) \right) l=(x(u0,v0+dv)x(u0,v0),y(u0,v0+dv)y(u0,v0))

m = ( x ( u 0 + d u , v 0 ) − x ( u 0 , v 0 ) , y ( u

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值