二重积分计算是个老大难,有的题目计算过程极其复杂,直角坐标和极坐标换元已不足以应对“复杂路况”,这个时候怎么办?整上一手超强换元法,出奇制胜,本文带你一窥究竟。
首先来回顾下定积分的换元过程:
I=∫abf(x)dxI=\int_{a}^{b}f(x)dxI=∫abf(x)dx ,令 x=g(t)x=g(t)x=g(t) ,则: I=∫g−1(a)g−1(b)f(g(t))dg(t)I=\int_{g^{-1}(a)}^{g^{-1}(b)}f(g(t))dg(t)I=∫g−1(a)g−1(b)f(g(t))dg(t)
最终为:I=∫g−1(a)g−1(b)f(g(t))g′(t)dtI=\int_{g^{-1}\left( a \right)}^{g^{-1}\left( b \right)}f(g\left( t \right))g'\left( t \right)dtI=∫g−1(a)g−1(b)f(g(t))g′(t)dt
可见换元要换三个东西(重点提示):
1.积分上下限;
2.被积函数;
3.积分变量
所以我们类比到二重积分的换元过程:
I=∫cd∫abf(x,y)dxdyI=\int_{c}^{d}\int_{a}^{b}f(x,y)dxdyI=∫cd∫abf(x,y)dxdy ,令 x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v) ,换元之后为:
I=∫gh∫eff(x(u,v),y(u,v))dx(u,v)dy(u,v)I=\int_{g}^{h}\int_{e}^{f}f(x(u,v),y(u,v))dx(u,v)dy(u,v)I=∫gh∫eff(x(u,v),y(u,v))dx(u,v)dy(u,v)
可见,积分上下限和被积函数好表示(积分上下限通过画图可以表示出来,被积函数直接带入表达式即可)。所以关键的难点就落到了 dx(u,v)dy(u,v)dx(u,v)dy(u,v)dx(u,v)dy(u,v) 如何表达成 dudvdudvdudv 上面,而这即是找它们之间的关系,怎么找?这就涉及到了雅可比行列式。
什么是雅可比行列式:
首先我们知道, dxdydxdydxdy 与 dudvdudvdudv 都表示微元面积,所以我们要找它们之间的关系,无非就是找换元前后微元面积的关系。
p.s.换元后微元边界不一定是直的,但是由于其很小,所以可以“以直代曲”
为了更清楚的了解换元前后微元面积的关系,我们取出左下角坐标为 (u0,v0u_{0},v_{0}u0,v0) 的一个微元和与其对应的微元一起放大,如下图:
由于我们经过了 x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v) 这个换元。所以坐标系中的点 (u0,v0u_{0},v_{0}u0,v0) 就变成另一个坐标系里面的 (x(u0,v0),y(u0,v0))(x(u_{0},v_{0}),y(u_{0},v_{0}))(x(u0,v0),y(u0,v0)) ,其他的点类似。于是就得到了上图右边微元的坐标。
接下来就可以求它们的面积了,根据平行四边形面积公式: s=∣a∣∣b∣∣sinθ∣=∣a×b∣s=|a||b||sin\theta|=|a\times b|s=∣a∣∣b∣∣sinθ∣=∣a×b∣ ,所以有:
dA=∣u×v∣=dudv,dA1=∣l×m∣dA=|u\times v|=dudv , dA_{1}=|l\times m|dA=∣u×v∣=dudv,dA1=∣l×m∣
其中 l=(x(u0,v0+dv)−x(u0,v0),y(u0,v0+dv)−y(u0,v0))l=\left( x(u_{0},v_{0}+dv)-x(u_{0},v_{0}),y(u_{0},v_{0}+dv)-y(u_{0},v_{0}) \right)l=(x(u0,v0+dv)−x(u0,v0),y(u0,v0+dv)−y(u0,v0))
m=(x(u0+du,v0)−x(u0,v0),y(u0+du,v0)−y(u0,v0))m=\left( x(u_{0}+du,v_{0})-x(u_{0},v_{0}),y(u_{0}+du,v_{0})-y(u_{0},v_{0}) \right)m=(x(u0+du,v0)−x(u0,v0