二重积分的换元积分、公式论证

文章探讨了在数学中,当将x、y替换为u、v后,如何正确处理雅可比矩阵中的偏导数问题。关键在于理解是x对u求导,这是基于面积大小的考虑。文中通过证明过程和向量点乘的概念来解释这一原理,并提供了一个简单的例子来帮助理解变量代换后的定义域转换和表示问题,强调了深入掌握这一概念需要耐心和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该章节虽然是选学,但是极其重要,应用场景也很广。故特此学习和笔记记录一下。

定理:
在这里插入图片描述
思考:

将x、y代换为u、v后,雅可比式中的多个偏导数到底因该是谁对随求偏导呢?比如,是x对u还是u对x呢?为什么呢?

答案:
是x对u求导。因为这时从面积大小上考虑的,若是u对x求导,则变得更小或者更大了。

证明过程:
在这里插入图片描述
注意:
此证明过程字字珠玑,充满想象力。这其中需要用到向量点乘(不是叉乘,点乘是向量运算,要乘以夹角的正弦值sin;而叉乘是标量运算,要乘以夹角的余弦值cos),点乘是有方向的,是两个向量垂直的方向,并且要符合右手法则,而叉乘没有方向。

图中,平行四边形面积跟坐标的运算关系,其证明如下:
在这里插入图片描述

例子:
在这里插入图片描述

此例子是课本上最简单的一个例子了。但是理解起来依然很难,其难点在于,变量代换后,其定义域的转换和表示,这一点需要自己慢慢体会,多做练习才能深入理解和掌握。
请不要急躁,take it easy,生命是一个过程,请乐在其中。

### 定积分法上下限变化规则 在定积分的计算过程中,当采用法时,变量替不仅会影响被积函数的形式,还会改变积分区间的上下限。以下是关于定积分法中上下限变化的具体规则: #### 基本原理 如果通过代 \( u = g(x) \),使得原来的积分区间从 \( x \in [a, b] \) 转变为新变量 \( u \) 的范围,则需要重新确定对应的积分上下限。具体来说,对于给定的变关系 \( u = g(x) \)[^1],可以通过将原始积分区间的端点分别代入该关系来获得新的积分上下限。 - 当 \( x = a \) 时,\( u_1 = g(a) \); - 当 \( x = b \) 时,\( u_2 = g(b) \). 因此,在完成上述转后,原定积分表达式可以写为: \[ \int_a^b f(x)\, dx = \int_{u_1}^{u_2} f(g^{-1}(u)) |g'(x)| du, \] 其中需要注意的是,这里涉及绝对值符号是因为长度总是正数[^2]。 #### 实际操作注意事项 实际应用此方法解决问题的过程中需注意以下几点事项: - **保持顺序一致性**:即使经过映射后的数值可能颠倒位置(即可能出现情况如原来是从较小到较大而变成相反),这并不影响最终结果的有效性;只需按照所得的新界限设定即可。 - **考虑单调性条件**:为了简化处理过程并确保唯一对应的关系成立,通常假设所选替代形式具有严格单增或者单减性质以便于反向解析得到确切解集。 ```python from sympy import symbols,integrate,sqrt # Define variables and function x,u=symbols('x u') expr= sqrt((9-x**2)/(x**2)) # Substitution rule defined as follows: sub_rule={x:sqrt(9-u)} du=-sqrt(u)/2 # Calculated derivative of substitution expression w.r.t 'u' new_expr=(expr.subs(sub_rule)*abs(du)).doit() integral_result=integrate(new_expr,(u,-8/3,0)) print(integral_result.evalf()) ``` 以上代码片段展示了如何利用Python库SymPy实现具体的例子中的步骤以及相应调整上下界的操作实例演示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值