个人学习笔记7-5:动手学深度学习pytorch版-李沐

#人工智能# #深度学习# #语义分割# #计算机视觉# #神经网络#

计算机视觉

13.10 转置卷积

例如,卷积层和汇聚层,通常会减少下采样输入图像的空间维度(高和宽)。然而如果输入和输出图像的空间维度相同,在以像素级分类的语义分割中将会很方便。转置卷积(transposed convolution)可以增加上采样中间层特征图的空间维度。

13.10.1 基本操作

转置卷积的实现:

import torch
from torch import nn
from d2l import torch as d2l

对输入矩阵X和卷积核矩阵K实现基本的转置卷积运算trans_conv:

def trans_conv(X, K):#K表示卷积核
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值