#人工智能# #深度学习# #语义分割# #计算机视觉# #神经网络#
计算机视觉
13.10 转置卷积
例如,卷积层和汇聚层,通常会减少下采样输入图像的空间维度(高和宽)。然而如果输入和输出图像的空间维度相同,在以像素级分类的语义分割中将会很方便。转置卷积(transposed convolution)可以增加上采样中间层特征图的空间维度。
13.10.1 基本操作
转置卷积的实现:
import torch
from torch import nn
from d2l import torch as d2l
对输入矩阵X和卷积核矩阵K实现基本的转置卷积运算trans_conv:
def trans_conv(X, K):#K表示卷积核
h, w = K.shape
Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
for i in range(X.shape[0]):
for j in range(X.shape[1]):