YOLOv8改进 - 注意力篇 - 引入LSKA注意力机制

一、本文介绍

作为入门性篇章,这里介绍了LSKA注意力在YOLOv8中的使用。包含LSKA原理分析,LSKA的代码、LSKA的使用方法、以及添加以后的yaml文件及运行记录。

二、LSKA原理分析

LSKA官方论文地址:LSKA文章

LSKA注意力机制(大可分离内核注意力):LSKA将深度卷积层的二维卷积核分解为级联的水平和垂直的1-D核。提出的分解允许在注意力模块中直接使用大核的深度卷积层,而不需要任何额外的模块。

在VAN中LSKA模块能够达到与标准LKA模块相当的性能,并降低了计算复杂性和内存占用。随着核尺寸的增加,LSKA设计使VAN更偏向于物体的形状而非纹理。

相关代码:

LSKA注意力的代码,如下。

class LSKA(nn.Module):
    # Large-Separable-Kernel-Attention
    def __init__(self, dim, k_size=7):
        super().__init__()

        self.k_size = k_size

        if k_size == 7:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)
        elif k_size == 11:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值