Dijkstra算法

Dijkstra算法,这就像在城市的夜生活中找到最快捷的路线一样,既实用又充满策略!这个算法是由荷兰计算机科学家Edsger Dijkstra发明的,用来找到图中一个节点到其他所有节点的最短路径。它特别适合用在那些包含了权重的图上,比如路线的距离或者花费时间。

Dijkstra算法的操作流程大致如下:

  1. 初始化: 首先标记起点的距离为0(因为它到自己的距离显然是0),其他所有点的距离标记为无穷大,这表示起始时我们不知道到这些点的最短路径。
  2. 设置未访问节点集合: 这个集合里一开始包含所有的节点,算法的执行过程中会逐渐从中移除节点。
  3. 选择最小距离的节点: 从未访问的节点中选出距离起点最近的一个,标记为当前节点。
  4. 更新邻接节点的距离: 对于当前节点的每一个邻接节点,计算通过当前节点到这个邻接节点的距离,如果这个距离比之前记录的距离短,就更新它。
  5. 重复执行: 将当前节点标记为已访问,然后再次选择未访问节点中距离最短的节点,重复上述步骤,直到所有的节点都被访问过。
  6. 完成: 当所有的节点都被访问后,算法结束,此时每个节点记录的距离值就是从起点到该节点的最短路径长度。

Dijkstra算法像是城市中的导航系统,总能找到从一点到另一点的最快路径。但记得,老兄,这个算法假设所有的权重都是正值,所以如果你的图中包含负权重的边,那么你可能需要考虑其他算法,比如贝尔曼-福特算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆小果不会写代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值