背包问题 01 完全

文章讲述了如何使用动态规划算法解决背包问题,给定N件物品和容量为V的背包,每件物品的体积和价值已知,目标是找出能使物品体积不超过背包容量且总价值最大的物品组合。算法通过状态转移方程f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i])实现求解。
摘要由CSDN通过智能技术生成

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

:::info
状态f[i][j]定义:前 i个物品,背包容量 j下的最优解(最大价值)
:::

#include<iostream>

using namespace std;

const int N=1010;
int f[N][N],v[N],w[N];
int main(){
    int n,m;
    cin>>n>>m;
    
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i];
        for(int j=1;j<=m;j++){
            if(j<v[i])f[i][j]=f[i-1][j];
            else f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<f[n][m];
    return 0;
}

一维优化
(1)状态f[j]:背包容量j下的最优解。
(2)注意枚举背包容量j必须从m开始。
:::info
如果使用顺序,会先更新f[4],再更新f[7],对于这个书包问题来讲,就是有可能,在更新f[4]的时候,已经把这次能加的物品加进来了,然后更新f[7]的时候,还有可能再加一次,所以必须使用逆序,保证,f[4]是没有加入新物品前,背包里的最优解。
:::

#include<iostream>

using namespace std;

const int N=1010;
int f[N],v[N],w[N];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i];
        for(int j=m;j>=v[i];j--){
         printf("f[%d]=max(f[%d],f[%d-v[%d]]+w[%d]\n",j,j,j,i,i);
            f[j]=max(f[j],f[j-v[i]]+w[i]);
            cout<<"体积"<<j<<"当前价值"<<f[j]<<endl;      
        }
    }
    cout<<f[m];
    return 0;
}
测试样例
4 5
1 2
2 4
3 4
4 5
f[5]=max(f[5],f[5-v[1]]+w[1]
体积5当前价值2
f[4]=max(f[4],f[4-v[1]]+w[1]
体积4当前价值2
f[3]=max(f[3],f[3-v[1]]+w[1]
体积3当前价值2
f[2]=max(f[2],f[2-v[1]]+w[1]
体积2当前价值2
f[1]=max(f[1],f[1-v[1]]+w[1]
体积1当前价值2
f[5]=max(f[5],f[5-v[2]]+w[2]
体积5当前价值6
f[4]=max(f[4],f[4-v[2]]+w[2]
体积4当前价值6
f[3]=max(f[3],f[3-v[2]]+w[2]
体积3当前价值6
f[2]=max(f[2],f[2-v[2]]+w[2]
体积2当前价值4
f[5]=max(f[5],f[5-v[3]]+w[3]
体积5当前价值8
f[4]=max(f[4],f[4-v[3]]+w[3]
体积4当前价值6
f[3]=max(f[3],f[3-v[3]]+w[3]
体积3当前价值6
f[5]=max(f[5],f[5-v[4]]+w[4]
体积5当前价值8
f[4]=max(f[4],f[4-v[4]]+w[4]
体积4当前价值6
8

有 N 件物品和一个容量是 V 的背包。每件物品无限使用。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ){
        cin >> v[i] >> w[i];
        for (int j = 1; j <= m; j ++ )
            for (int k = 0; k*v[i] <= j; k ++ )
                f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
    }
    cout << f[n][m] << endl;
    return 0;
}

屏幕截图 2024-03-18 225125.png

优化思路
列举一下更新次序的内部关系:
:::
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2v]+2w , f[i-1,j-3v]+3w , …)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2v] + w , f[i-1,j-3v]+2*w , …)
由上两式,可得出如下递推关系:
f[i][j]=max(f[i,j-v]+w , f[i-1][j])
:::

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ){
        cin >> v[i] >> w[i];
    for(int j = 1 ; j <=m ;j++)
    {
    if(j-v[i]<0)f[i][j] = f[i-1][j];
    else f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
    }
    }
    cout << f[n][m] << endl;
    return 0;
}

  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值