大整数加法:
数组第0位存放个位数。因为会有进位问题,在数组最后加上比较简单
代码怎么写:
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
//加上引用是为了提高效率
//C=A+B 大整数相加
//模板不一定是一种,记住思路,哪里可以变,哪里不可以
vector<int> add(vector<int>&A,vector<int>&B)
{
//先列出答案数组
vector<int>c;
int t=0;
for(int i=0;i<A.size()||i<B.size();i++)
{
if(i<A.size()) t+=A[i];
if(i<B.size()) t+=B[i];
// 上面两行经历后t里面存的是 A[i]+B[i]+t(上一位的进位)
c.push_back(t%10);
t/=10;
}
//最高位还有进位的 话,就要补上1
if(t) c.push_back(1);
return c;
}
int main()
{
string a,b;cin>>a>>b;
vector<int>A,B;
for(int i=a.size()-1;i>=0;i--)
{
A.push_back(a[i]-'0');
}
for(int i=b.size()-1;i>=0;i--)
{
B.push_back(b[i]-'0');
}
auto c=add(A,B);
for(int i=c.size()-1;i>=0;i--) cout<<c[i];
return 0;
}
大整数减法:
大整数存储都是一致的。
先从个位开始减,不够减的话就向前借位
假定A,B都是正数
如果存在负数,分情况讨论
要保证A>=B.如果反之的话,就计算B-A,去负号
Ai-Bi-t(t表示上一位有没有借位,如果借位了,t=1,反之,t=0)
① Ai-Bi-t >=0 Ai-Bi-t
②Ai-Bi-t <0 Ai-Bi+10-t
#include<bits/stdc++.h>
using namespace std;
//C=A-B
bool check(vector<int>&A,vector<int>&B)
{
//先判断位数
if(A.size()!=B.size()) return A.size()>B.size();
//比大小,从高位开始比较
for(int i=A.size()-1;i>=0;i--)
{
if(A[i]!=B[i]) return A[i]>B[i];
}
return true;
}
vector<int> sub(vector<int>&A,vector<int>&B)
{
vector<int>c;
int t = 0;
for(int i=0;i<A.size();i++)
{
t = A[i]-t;
//一定要判断B[i] 是否还存在
if(i<B.size()) t-=B[i];
//对于t>=0,t+10)再%10,就是t本身
//t<0 ,t+10)再%10,就是t+10.使用这个式子把两种情况合二为一
//t一定是个位数,if t>0
c.push_back((t+10)%10);
//判断是否要借位
if(t<0) t=1;
else t=0;
}
//这一步是去除前导0,但是如果结果就是0的话,要留一位
//c.back()是0的话就把它去掉,因为是倒着放的,所以看c的最后
while(c.size()>1&&c.back()==0) c.pop_back();
return c;
}
int main()
{
string a,b;
vector<int>A,B;
cin>>a>>b;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-‘0’);
for(int i=b.size()-1;i>=0;i--) B.push_back(b[i]-‘0’);
//先来判断大小
if(check(A,B))
{
auto C=sub(A,B);
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
}
else
{
auto C=sub(B,A);
cout<<"-";
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
}
return 0;
}
大整数乘法:
这里是把乘数 b看成一个数 ,就是一起乘
这里的乘数是一个大整数乘以一个比较小的数
#include<bits/stdc++.h>
using namespace std;
//C = A*b;(高精度乘以一个低精度数)
vector<int> mul(vector<int>&A,int b)
{
vector<int>c;
int t=0;
//只要t不是0就一直循环
for(int i=0;i<=A.size()||t;i++)
{
if(i<A.size()) t += A[i]*b;
c.push_back(t%10);
t/=10;
}
while(c.size()>1&&c.back()==0) c.pop_back();
return c;
}
int main()
{
string a;
int b;
vector<int>A;
cin>>a>>b;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
vector<int> C = mul(A,b);
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
return 0;
}
大整数除法:
一个高精度除以一个低精度
#include<bits/stdc++.h>
using namespace std;
vector<int> div(vector<int>&A,int b,int &r)
{
//A/b,余数位r,c是商
vector<int>c;
int t=0;
r=0;
//除法就是从最高位开始了,与其他三种不同处
//为了保证出现其他运算才这样的,有时间可以把这个优化一下
for(int i=A.size()-1;i>=0;i--)
{
r =r*10+A[i];
c.push_back(r/b);
r%=b;
}
reverse(c.begin(),c.end());
while(c.size()>1&&c.back()==0) c.pop_back();
return c;
//余数通过引用传回去
}
int main()
{
string a;
int b;
cin>>a;
vector<int>A;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
int r;
auto c = div(A,b,r);
for(int i=c.size()-1;i>=0;i--) cout<<c[i];
cout<<endl<<r<<endl;
return 0;
}