Ubuntu20.04配置NVIDIA+CUDA12.2+CUDNN【附所有下载资源】【亲测有效】【非常详细】

配置CUDA12.2

本机硬件
双系统Ubuntu20.04系统
笔记本RTX3050ti显卡
下载驱动
在这个网址找到自己电脑对应的驱动https://www.nvidia.com/Download/index.aspx?lang=en-us
我的是笔记本电脑,显卡是RTX3050ti,所以对应这个驱动下载Linux x64 (AMD64/EM64T) Display Driver | 535.146.02 | Linux 64-bit | NVIDIA
这一步很重要,决定了能够安装成功
卸载所有原驱动
sudo apt-get purge nvidia*
禁用nouveau
新建文件blacklist-nouveau.conf :
sudo vim /etc/modprobe.d/blacklist-nouveau.conf
往文件中写⼊
blacklist nouveau
options nouveau modeset=0
重启系统
sudo reboot 
查看nouveau模块是否被加载(若无输出,则成功)
lsmod | grep nouveau
安装Nvidia驱动
安装必要的项目
sudo apt-get update
sudo apt-get install gcc
sudo apt-get install ubuntu-make
sudo apt-get install make
给驱动run文件赋予执行权限并安装
sudo chmod +x NVIDIA-Linux-x86_64-535.146.02.run
sudo ./NVIDIA-Linux-x86_64-535.146.02.run -no-opengl-files -no-x-check -no-nouveau-check	
Nvidia驱动安装验证
nvidia-smi

安装CUDA - CUDA Toolkit 9.0 Downloads

下载

CUDA Toolkit 12.3 Update 2 Downloads | NVIDIA Developer

wget https://developer.download.nvidia.com/compute/cuda/12.3.2/local_installers/cuda_12.3.2_545.23.08_linux.run
sudo sh cuda_12.3.2_545.23.08_linux.run --no-opengl-libs
配置.bashrc
vim ~/.bashrc
添加下列内容
export PATH="/usr/local/cuda/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
刷新配置
source ~/.bashrc
查看并且测试安装
nvcc -V
测试设备与带宽
cd /usr/local/cuda-12.3/extras/demo_suite/
./deviceQuery
./bandwidthTest
#如果两个测试的结果都是 Result = PASS CUDA 安装成功
/usr/local/cuda-12.3/extras/demo_suite

安装cuDNN

下载
https://developer.nvidia.com/rdp/cudnn-archive
#找到cudnn-local-repo-ubuntu2204-8.9.6.50_1.0-1_amd64.deb
安装cuDNN库
sudo dpkg -i cudnn-local-repo-ubuntu2004-8.9.6.50_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-*/cudnn-local-*-keyring.gpg /usr/share/keyrings/
更新APT仓库并安装cuDNN运行时库、开发库和示例库
sudo apt-get update
sudo apt-get install libcudnn8=8.9.6.50-1+cuda12.2
sudo apt-get install libcudnn8-dev=8.9.6.50-1+cuda12.2
sudo apt-get install libcudnn8-samples=8.9.6.50-1+cuda12.2
验证安装成功
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN

#显示“Test passed!”或类似的消息,表示cuDNN运行正常。

- 如果编译报错fatal error: FreeImage.h: No such file or directory
    1 | #include "FreeImage.h"
      |          ^~~~~~~~~~~~~
- 解决方法:sudo apt-get install libfreeimage3 libfreeimage-dev

https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值