学习周报:文献阅读+Fluent案例+水力学理论学习

目录

摘要

Abstract

文献阅读

文献摘要

提出问题

提出方案

所需方程介绍

Saint-Venant Equations

傅里叶特征嵌入(Fourier Feature Embedding)

PINN框架

输入层定义

损失函数定义

权值的确定

训练方式

案例说明

案例3:风暴潮沿倾斜的明渠传播

案例4:潮汐和浪涌沿倾斜的明渠传播

总结

Fluent案例:离心泵内流场仿真

模型概述

网格部分

求解器设置

理论学习部分

总结


摘要

在本周中,通过阅读文献,对PINN在大尺度模型的研究进行了解,在大尺度河流模型中,PINN可以做到简化模型、缩小大尺度河流模型解的比例的作用。Fluent中,选用离心泵内流场仿真的案例,了解到在旋转机械中的流动如何进行设置。理论学习方面,液体三元流的基本原理进行了学习。

Abstract

In this week, I read the literature to learn about the research of PINN in large-scale flow models, in which PINN can simplify the model and reduce the proportion of large-scale river model solutions. In Fluent, I practiced the example of flow field simulation in a centrifugal pump to see how the flow in rotating machinery is set. In terms of theoretical learning, the basic principles of liquid ternary flow were studied.

文献阅读

大尺度河流模型的圣维南方程的物理信息神经网络

Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model

文献摘要

给出了一个基于最先进的物理信息神经网络(PINN)的机器学习(ML)框架,以模拟子网格尺度上的降尺度流。证明了PINN能够吸收各种类型的观测数据并直接求解一维(1-D) Saint-Venant方程(SVE)。有以下成果:

  1. 对漫滩和明渠进行了流动模拟,根据解析解和数值模型评估了PINN的性能。结果表明,在吸收有限观测值的情况下,水深的PINN解具有令人满意的精度。
  2. 对风暴潮和潮汐引起的洪水波传播问题,提出了一种基于傅里叶特征嵌入的神经网络结构,该结构无缝编码了PINN公式中的周期性潮汐边界条件。
  3. 基于pinn的降尺度可以通过同化观测数据得到更合理的顺槽水深的子网格解。在求解亚网格尺度的地形和动态流态方面,PINN解决方案优于简单的线性插值。

提出问题

由于气候变暖会加剧洪涝和复合洪水等灾害的发生,其潮汐河流动力学,潮汐河流动力学受水文和水动力过程、河流几何形状和当地流域特征的非线性相互作用影响。

  1. 传统的分析方法在使用过程中,通常没有充分利用可能用于潮汐河流的测量数据和高分辨率遥感数据。这些数据如果被适当地同化,将有可能提高模型的性能,特别是对于不能完全解决河流动力学的大尺度模型。
  2. 大尺度河流模型的物理方程中的近似和网格分辨率的不足,限制了这些模型在表示局部洪水过程时的精度,特别是在高动态的陆水界面附近。即使使用简化的物理,大规模河流模型也必须采用低分辨率(5-25公里)网格,以适应大规模应用的高计算成本。
  3. 模型预测是基于一组输入变量,如降水和流量。此外,训练模拟器通常是昂贵的,因为它需要大量的数据,包括观察或多个高分辨率数值模拟的实现。

提出方案

由于PINN在处理正、逆问题中的优势表现,使得研究人员注意到这种新型的预测方式,这种方法极大地缓解了ML在模型训练中由于数据稀缺性造成的局限性。PINN的一个关键特征是它易于同化观测值,在不同时空尺度上的时变观测或空间快照可以很容易地纳入PINN训练,且由于其自动微分和无网格特性,使其无需进行离散化处理。

该研究旨在开发一种基于PINN数据同化的降尺度方法,以解决沿海地区大尺度河流模型中河流动态的亚格变率问题,开发了一种一维SVE的PINN求解器。将原位和遥感测量以及粗尺度模型解合并在一起,得到靠近海岸界面的缩小尺度解,提高了洪水模拟效果。

所需方程介绍

Saint-Venant Equations

一维SVE由一个连续方程和一个动量方程组成,该方程表示沿河道的速度(u)和水深(h)的水动力学,不可压缩连续方程定义为:

(其中x为沿河道的距离,t为时间,q为单位长度河道从地表和地下径流、地下水和降水中流入的水量。)

在研究过程中,假设河道不接受来自陆地和大气的水(q = 0),其全动力形式的动量方程为:

(g为重力,S为河床坡度,Sf为摩擦坡度)

其中河床坡度和摩擦坡度可由Chezy-Manning方程计算:

曼宁粗糙度系数n作为摩擦系数,R为水力半径

在本次研究中,只考虑到矩形管道,因此水力半径R使用下式计算:

b是通道宽度

大尺度河流模型通常使用动量方程的简化形式,包括局部惯性方程,其中忽略了对流加速度项、对流加速项和局部加速项的扩散波动方程,以及忽略所有偏导数项的运动波动方程。这些简化方案都不适用在洪水波动力学强时主导动量传播的平流的预测过程中。

傅里叶特征嵌入(Fourier Feature Embedding)

PINN解可能会被困到局部最小值(平凡解),它满足PDE残余损失,但远不是真正的解,也应该满足初始和边界条件。

这是因为PDE的平凡解会导致激活函数(例如tanh)下的平坦输出。这个问题可以通过将PINN的输入转换为多尺度特征空间来缓解,例如通过傅里叶特征映射或正弦映射,这种转换可以调节输出可变性的水平,以匹配时间和空间上模拟物理的高频模式。

在本研究中,设计了一种新的神经网络架构,该架构仅将傅里叶特征嵌入到时间坐标中,以解释潮汐边界强迫的周期性特征。傅里叶特征嵌入提供了对目标解的初始猜测,通过将时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值