学习周报:文献阅读+Fluent案例+水力学理论学习

目录

摘要

Abstract

文献阅读

文献摘要

提出问题

提出方案

所需方程介绍

Saint-Venant Equations

傅里叶特征嵌入(Fourier Feature Embedding)

PINN框架

输入层定义

损失函数定义

权值的确定

训练方式

案例说明

案例3:风暴潮沿倾斜的明渠传播

案例4:潮汐和浪涌沿倾斜的明渠传播

总结

Fluent案例:离心泵内流场仿真

模型概述

网格部分

求解器设置

理论学习部分

总结


摘要

在本周中,通过阅读文献,对PINN在大尺度模型的研究进行了解,在大尺度河流模型中,PINN可以做到简化模型、缩小大尺度河流模型解的比例的作用。Fluent中,选用离心泵内流场仿真的案例,了解到在旋转机械中的流动如何进行设置。理论学习方面,液体三元流的基本原理进行了学习。

Abstract

In this week, I read the literature to learn about the research of PINN in large-scale flow models, in which PINN can simplify the model and reduce the proportion of large-scale river model solutions. In Fluent, I practiced the example of flow field simulation in a centrifugal pump to see how the flow in rotating machinery is set. In terms of theoretical learning, the basic principles of liquid ternary flow were studied.

文献阅读

大尺度河流模型的圣维南方程的物理信息神经网络

Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model

文献摘要

给出了一个基于最先进的物理信息神经网络(PINN)的机器学习(ML)框架,以模拟子网格尺度上的降尺度流。证明了PINN能够吸收各种类型的观测数据并直接求解一维(1-D) Saint-Venant方程(SVE)。有以下成果:

  1. 对漫滩和明渠进行了流动模拟,根据解析解和数值模型评估了PINN的性能。结果表明,在吸收有限观测值的情况下,水深的PINN解具有令人满意的精度。
  2. 对风暴潮和潮汐引起的洪水波传播问题,提出了一种基于傅里叶特征嵌入的神经网络结构,该结构无缝编码了PINN公式中的周期性潮汐边界条件。
  3. 基于pinn的降尺度可以通过同化观测数据得到更合理的顺槽水深的子网格解。在求解亚网格尺度的地形和动态流态方面,PINN解决方案优于简单的线性插值。

提出问题

由于气候变暖会加剧洪涝和复合洪水等灾害的发生,其潮汐河流动力学,潮汐河流动力学受水文和水动力过程、河流几何形状和当地流域特征的非线性相互作用影响。

  1. 传统的分析方法在使用过程中,通常没有充分利用可能用于潮汐河流的测量数据和高分辨率遥感数据。这些数据如果被适当地同化,将有可能提高模型的性能,特别是对于不能完全解决河流动力学的大尺度模型。
  2. 大尺度河流模型的物理方程中的近似和网格分辨率的不足,限制了这些模型在表示局部洪水过程时的精度,特别是在高动态的陆水界面附近。即使使用简化的物理,大规模河流模型也必须采用低分辨率(5-25公里)网格,以适应大规模应用的高计算成本。
  3. 模型预测是基于一组输入变量,如降水和流量。此外,训练模拟器通常是昂贵的,因为它需要大量的数据,包括观察或多个高分辨率数值模拟的实现。

提出方案

由于PINN在处理正、逆问题中的优势表现,使得研究人员注意到这种新型的预测方式,这种方法极大地缓解了ML在模型训练中由于数据稀缺性造成的局限性。PINN的一个关键特征是它易于同化观测值,在不同时空尺度上的时变观测或空间快照可以很容易地纳入PINN训练,且由于其自动微分和无网格特性,使其无需进行离散化处理。

该研究旨在开发一种基于PINN数据同化的降尺度方法,以解决沿海地区大尺度河流模型中河流动态的亚格变率问题,开发了一种一维SVE的PINN求解器。将原位和遥感测量以及粗尺度模型解合并在一起,得到靠近海岸界面的缩小尺度解,提高了洪水模拟效果。

所需方程介绍

Saint-Venant Equations

一维SVE由一个连续方程和一个动量方程组成,该方程表示沿河道的速度(u)和水深(h)的水动力学,不可压缩连续方程定义为:

(其中x为沿河道的距离,t为时间,q为单位长度河道从地表和地下径流、地下水和降水中流入的水量。)

在研究过程中,假设河道不接受来自陆地和大气的水(q = 0),其全动力形式的动量方程为:

(g为重力,S为河床坡度,Sf为摩擦坡度)

其中河床坡度和摩擦坡度可由Chezy-Manning方程计算:

曼宁粗糙度系数n作为摩擦系数,R为水力半径

在本次研究中,只考虑到矩形管道,因此水力半径R使用下式计算:

b是通道宽度

大尺度河流模型通常使用动量方程的简化形式,包括局部惯性方程,其中忽略了对流加速度项、对流加速项和局部加速项的扩散波动方程,以及忽略所有偏导数项的运动波动方程。这些简化方案都不适用在洪水波动力学强时主导动量传播的平流的预测过程中。

傅里叶特征嵌入(Fourier Feature Embedding)

PINN解可能会被困到局部最小值(平凡解),它满足PDE残余损失,但远不是真正的解,也应该满足初始和边界条件。

这是因为PDE的平凡解会导致激活函数(例如tanh)下的平坦输出。这个问题可以通过将PINN的输入转换为多尺度特征空间来缓解,例如通过傅里叶特征映射或正弦映射,这种转换可以调节输出可变性的水平,以匹配时间和空间上模拟物理的高频模式。

在本研究中,设计了一种新的神经网络架构,该架构仅将傅里叶特征嵌入到时间坐标中,以解释潮汐边界强迫的周期性特征。傅里叶特征嵌入提供了对目标解的初始猜测,通过将时间映射到多尺度傅里叶空间来处理潮汐波在多个潮汐周期中的传播,时间和空间的前馈通道现在定义为:

其中i表示傅里叶维数的指标。在多尺度问题中,可以将时间输入映射到具有不同s的几个傅立叶特征,以再现不同频率的可变性源。s的典型范围在10−1和102之间。

s的值可以通过试错法或对训练数据进行谱分析来确定,该参数也可以被视为可训练的超参数,并通过监测损失函数在PINN训练中进行调整。

PINN框架

其整体的网络如下表示,左边是密集连接的神经网络,输入坐标为x和t,输出坐标为u和h。

为了说明,只显示2个隐藏层,每个隐藏层4个神经元。右边是圣维南方程的公式和自动微分计算的算子,其中I为单位算子。

输入层定义

PINN中的全连接前馈深度神经网络(DNN)以时空坐标x和t作为输入,在输出层预测相应的未知变量u和h。在输入和输出层之间有l个隐藏层,每个隐藏层中有Nl个神经元。相邻层之间的神经元完全连接,第1层的输入(zl)由前一层的输出(zl−1)馈送:

在本研究中,激活函数选择tan h(x), W和b使用广泛使用的初始化方案Xavier方案进行初始化,其中初始权值从截断的正态分布中采样。控制方程的偏导数与DNN预测的解一起用于近似控制方程的残差,并利用PINN自动微分求偏导数。

在PINN中,瞬时速度u(x, t)和水深h(x, t)的SVE解估计为:

θ是权重和偏差向量

损失函数定义

损失函数由PDE的残差(SVE中连续方程和动量方程的残差),以及与u和h相关的DNN逼近对边界条件(BC)和快照数据(S)的均方误差组成,表示如下:

下标j为BCu, BCh, Su和Sh, j和w分别表示损失项和权重系数

PDE的损失函数Jf如下:

式中Nf为计算域中的并置点个数

边界条件(BC)与空间快照数据对应的损失函数定义为:

NBC为计算域边界处采样的点数,NS为空间快照处采样的点数,T为模拟周期

时变数据,如u和h的观测值,可以在PINN训练中使用,以增加进一步的约束(Wobsu、Jobsu、Wobsh、Jobsh)观测值对应的未加权损失函数为:

权值的确定

由于权重在PINN预测中的重要性,通常在训练前通过试错过程进行调整,以寻找最优解,这也被称为非自适应加权。但这种方法十分耗时,在本研究中,采用了自适应权重策略。

该策略通过更新加权系数来平衡DNN训练反向传播过程中的梯度,从而缩放不同的损失项,每次训练的权值都是根据前一次迭代得到的损失J来更新的。DNN参数在每个迭代步骤的表达式为:

(K为步长,η为学习率)

在第(k + 1)次迭代时,估计的权重系数:

然后用移动平均线更新新的加权系数:

超参数α决定了前一权重的衰减率,并取为0.9,以确保训练过程中的稳定调整

训练方式

DNN使用随机梯度下降法训练,使用自适应优化算法Adam optimizer最小化方程的损失函数,采用初始学习率为0.9的学习率算法,为使其归一化,空间和时间都映射到[−1,1]:

其中X表示X和t的输入向量

PINN训练和验证所需的BC、空间快照和观测,训练数据由粗尺度模型的数值解、遥感数据和原位测量分别提供:

案例说明

原文献中共有六个案例,流动模拟是在一个最初干涸的洪泛区和一个理想的明渠上进行的,这些明渠受上游排放和下游潮汐和风暴潮的影响。

首先评估了PINN数据同化在解决流动动力学(案例1-3)和傅立叶特征嵌入方案在捕获高频潮汐变化(案例4)方面的能力。然后,比较了PINN在空间变化通道流降尺度方面的性能与传统线性插值方法的性能(案例5-6),使用相对L2误差和和均方根误差(RMSE)进行评估,本次文献展示中选用两个案例进行介绍。

案例3:风暴潮沿倾斜的明渠传播

本案例检验了PINN在更动态的流动条件下解决全SVE问题的能力,参考解是从广泛使用的基于有限差分的水力模型HEC-RAS中获得的。

HEC-RAS的数值解为PINN训练提供了BC、伪空间快照和现场观测数据。最大规范的收敛标准/公差设置为0.006 m (0.02 ft)。

实验设置在一个均匀宽度为3 m的明渠中。三段的坡度约为0.007、0.004和0.01 m m−1。水流型随河道坡度的变化而变化。在HEC-RAS中,信道被分成节点相连的段,空间分辨率为6m。状态变量(h和u)每15分钟输出一次。在上游边界x = 914 m (3,000 ft)处施加5.7 m3 /s (200 cfs)的恒定流量,而在下游边界x = 0 m处施加伪风暴潮。

风暴潮近似使用周期正弦波(式30),振幅为2.4米,周期为50小时。曼宁系数为0.022 m−1/3 s。模拟周期为24小时。请注意,在HEC-RAS模拟中使用的美国习惯单位被转换为标准国际单位。

(计算域示意图)

DNN架构由3个隐藏层组成,每个隐藏层64个神经元。并置点在每个计算节点上指定。学习率初始化为5 × 10−4,然后每5000次迭代以0.9的速率指数递减。

关注下游x = 0-305 m (0-1,000 ft)的洪水传播,在该区域潮汐和风暴潮占主导地位。剩余域的并置点不用于模型训练。上游BC和下游BC分别在x = 305 m和x = 0 m处施加。由于卫星重访时间通常大于一天,因此仅在t = 0时指定h的空间快照。假定每15分钟可获得一次时间序列观测,并在x = 100和200 m处同化。由此得出的NS、NBC和Nobs分别为51、192和96。u和h的BC由HEC-RAS输出得到。在HEC-RAS中加入0.2%的噪声,得到h的快照以及u和h的观测数据。预测结果如下:

(HEC-RAS模型(a)和物理信息神经网络(PINN)模型(b)模拟的水深时空演变及PINN模型的模拟误差(c))

对比结果如下:

本案例表明,PINN解决方案与参考解决方案非常吻合,在沿通道剖面的上游端附近具有很小的模拟偏差。对应的L2和RMSE也意味着良好的性能。误差接近0.01 m的值,是参考模型的精确再现。

案例4:潮汐和浪涌沿倾斜的明渠传播

模拟了由潮汐和风暴潮沿上述中使用的相同明渠的组合所迫使的洪水波传播,重点是检查傅里叶特征嵌入的效果。

日潮汐信号设A = 1.5 m, TBC = 25 hr,如式30所示。风暴潮是在随机选择的48小时内强加给潮汐的。上游流量为5.7 m3 /s。模拟时间延长至10天。

状态变量(h和u)每1小时输出一次。采用4个隐藏层的DNN架构,每个隐藏层由64个神经元组成。其他配置与前文叙述的配置相同,除了在初始状态和最后一个时间步骤添加快照,假设每10天有卫星数据可用。根据更新后的输出间隔,对应的NS为102,NBC和Nobs分别为480和240。

在两种不同的神经网络架构下评估了PINN解决方案:

  1. 标准神经网络架构
  2. 使用傅里叶特征嵌入的神经网络架构。

在这两种解决方案中,在x = 100和200 m处添加观测值。我们使用s = 0.25和10来解释这种情况下的潮汐频率。其结果表示如下:

案例4中HEC-RAS模型(a)、不含傅里叶特征嵌入的标准物理信息神经网络(PINN)模型(b)和含傅里叶特征嵌入的PINN模型(c)模拟的水深时空演变,以及标准PINN模型(d)和含傅里叶特征嵌入的PINN模型(e)的模拟误差。

由上图可知,编码傅里叶特征的PINN解决方案能够捕获由下游潮汐引起的周期性变化。C图中再现了潮汐的相位和涨潮的幅度。水面的上升和下降也得到了很好的模拟。

HEC-RAS(参考)、带有傅里叶特征嵌入的物理信息神经网络(PINN)模型(PINN标准)和没有傅里叶特征嵌入的PINN模型(PINN ff)在不同潮汐条件的四个时间瞬间(即距初始时间65、80、155和160小时)模拟的概念倾斜开放河道的水阶段。时间瞬间由图a中左边的三角形标记。

可以发现,较大的偏差只发生在低潮时,此时水流向下游和两个观测点之间相对较快。在x = 100和x = 200 m处的偏差可能是由于损失函数的权重,该权重平衡了观测损失(Jobs)与其他损失项(即Jf, JBCa和JS)。相比之下,使用标准架构的PINN解决方案只能预测风暴潮和少数潮汐周期,并且在没有捕获潮汐变化时性能较差。使用傅里叶特征嵌入的解决方案比标准的PINN解决方案具有更小的相对L2误差和RMSE。

总结

本次文献中测试了PINN在洪水建模中的适用性,以描绘更精确的淹没图,并为将该方法应用于实际问题创造了一条有希望的道路,未来当地表水储存和通量的高质量卫星图像以及更全面的原位测量网络的出现可获得更好的结果。

研究证明了PINN通过同化数据来求解一维SVE的能力。然而,一维方法忽略了风暴潮传播过程中的垂直分层和斜压强条件,限制了在二维洪水制图中的应用。

所作出的成果如下:

(1)控制方程的守恒物理将训练数据集正则化到可管理的规模,从而减轻了数据密集型神经网络模型的负担。

(2)所提出的PINN框架可以(a)求解完整的动态1-D SVE方程,(b)使用傅立叶特征嵌入编码潮汐边界的周期性变化,(c)吸收各种数据类型,(d)集成到大尺度河流模型中以获得缩小比例的解。

Fluent案例:离心泵内流场仿真

模型概述

该离心泵的转速为1450RPM/min,流量为90kg/s,由于官方给出案例时给的是网格文件,所以在本次案例中将从三个方面去进行演示,分别为:计算区域设定、边界条件设定、求解器设定;具体模型如下图:

网格部分

给出的网格为混合网格,在旋转机械部分为六面体网格,静止区域为四面体网格。

进入Fluent求解器中,对网格进行检查,发现存在交界面,即在同一个位置进行了两次网格划分,两者在计算时存在差值:

由于这两个interface面没有匹配上,故网格检查出现错误,会导致在求解计算时会出计算区域不明确的情况,需要先对交界面进行定义。

叶片网格划分情况如下图所示,对于旋转机械部分,叶片相连的两个壁面分为内外部分,定义为hub(内部小圆)和shroud(外部大圆):

(叶片网格划分)

(hub部分)

(shroud部分)

壳体部分为四面体网格;存在交界面,在Fluent中,可以对两个四面体网格和六面体网格进行差值计算:

求解器设置

本案例只考虑扬程高度,并不考虑其温度及多相流条件,故不作设置。使用的湍流模型为k-omega GEKO模型,该模型为新型湍流模型目标是提供具有足够灵活性的单个模型,以涵盖广泛的应用,算是一个通用的湍流模型,可以在不同环境下,分别调用k-Omega和k-epsilon模型用于计算。具体设置如下:

对流体材质进行定义,选用水作为流体材料,属性如下:

更改Impeller的材料为水,选择运动参考系,该命令可将旋转机械问题转换为稳态问题,因为叶片为动网格,但通过运动参考系命令可以将某些运动问题转换为稳态问题进行计算.

对于离心泵,转换为稳态进行计算为一个常见的办法,其旋转部分和静止部分由interface进行连接,对旋转部分添加一个速度即可,将转速设定为151.7667 rad/s(≈1450rev/min),其余设置如下:

将静止区域的材料也改为水,流体部分设置完毕。

进口设置为压力入口,在本次案例中不做输入,原因是对于不可压缩流体的问题,其压力通常认为是相对量,对总的结果影响不大。具体设置:

出口处要先将条件从质量流入口改为质量流出口,将质量流率改为90kg/s,设置为质量流出口表明在该处不会出现任何形式的回流,即不会有湍流的回流属性:

在上方的选项卡中勾选涡流模型,对interface进行划分,对旋转机械后处理条件进行更改,创建一个名为nps的界面,在匹配之前需对转子模型进行冻结,即将其转为使用坐标系代替。在栅距变化类型中选择等栅距比,栅距比常用于在两叶片周期不一致的情况中。本案例中两个叶片都是360°旋转,故选择等栅距比:

匹配交界面完成后,对网格进行再次检查,并未出现警告,即交界面匹配成功。边界条件设定完毕。

求解方法保持默认,勾选高阶项松弛命令,可以帮助仿真在高阶格式时,进一步收敛:

对于泵类问题,上面提到扬程为一个主要的观测目标,可以在报告定义中进行监测进出口压力来进行计算,在报告定义中创建一个质量加权平均表面报告,场变量选择总压,分别监测进出口的总压力:

并在表达式中创建新的表达式({p-out}-{p-in})/(998.2[kg/m^3]*9.81[m/s^2]),使用混合初始化,检查表达式是否正确,即能否出现值且单位是否正确(m):

开始进行计算,迭代步数设为500步,时间比例因子为10,因为旋转机械的伪瞬态问题所需的时间跨度需大一些,计算结果如下:

扬程:

原案例:

残差:

速度矢量图:

压力云图:

速度云图:

理论学习部分

总结

在查找文献得过程中,发现PINN缺少与水处理构筑物的相关文献,多数是包含在解决方程数值解和用于预测水流动的情况,下周将从污染物的角度看看能不能找到相应的文献。在Fluent学习里也在找相应的构筑物部件来进行仿真模拟,对于水力学的相关部分也会进行加强学习。

  • 15
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值