收藏和点赞,您的关注是我创作的动力
概要
在阅读大量文献的基础上,对睡意检测系统的国内外研究现状进行归纳总结。本文通过比较不同的睡意检测方法,设计了基于OpenCV和Dlib库的睡意检测系统。利用OpenCV中的Haar级联检测进行人脸识别,初步定位人脸。首先利用积分图快速计算出所有脸部的特征值,共得到117941个人脸特征值。然后通过AdaBoost算法进行训练,具体做法是将弱分类器组合形成强分类器,再将强分类器级联。如此,人脸的定位将更快速与准确。利用Dlib库进行人脸特征点检测,首先使得面部图像的特征点被标记为训练的一部分,然后利用回归树模型进行训练,将人脸检测的结果输入到训练后的模型中得到最终的人脸特征点定位结果。最后通过眼睛纵横比判断是否闭眼,并通过闭眼时长进而判断是否存在睡意。通过仿真实验结果表明,基于OpenCV和Dlib库的睡意检测系统准确度高、实时性强、检测方便,能够满足实际应用场景需求。
本文共六章。第一章介绍了睡意检测系统的研究背景及意义,睡意检测方法的研究现状;第二章简要介绍了OpenCV,详细阐述了基于OpenCV进行人脸检测的原理;第三章简单介绍了Dlib库,详细阐述了基于Dlib库进行人脸特征点检测的原理;第四章提出了睡意检测系统软件设计方案,给出了程序流程图以及部分代码,对判断睡意的方法进行了详细地介绍;第五章给出了实验结果,并对实验结果进行分析;第六章总结全文工作并加以展望。
关键词:睡意检测;人脸检测;人脸特征点检测;OpenCV;Dlib