欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
在医疗影像诊断领域,CT(Computed Tomography)影像因其高分辨率和三维成像能力,成为医生诊断疾病的重要工具。然而,人工分析大量的CT影像数据既耗时又容易出错。因此,开发自动的CT影像分类系统对于提高诊断效率、减少人为错误具有重要意义。本项目旨在利用深度学习技术,特别是基于TensorFlow框架的VGG16卷积神经网络模型,实现CT影像的自动分类。
二、项目目标
本项目的主要目标是构建一个基于VGG16卷积神经网络的CT影像分类模型,用于自动识别和分类CT影像中的疾病类型。具体目标包括:
利用VGG16模型作为特征提取器,提取CT影像中的关键特征。
通过训练和优化模型,提高CT影像分类的准确率和效率。
提供一个用户友好的界面,方便医生或研究人员上传CT影像并获取分类结果。
三、项目内容
数据集准备:
收集包含不同疾病类型的CT影像数据集,并进行必要的预处理,如图像裁剪、缩放、归一化等。
将数据集划分为训练集、验证集和测试集,用于模型的训练、验证和测试。
模型构建:
基于TensorFlow深度学习框架,利用预训练的VGG16模型作为特征提取器。
在VGG16模型的基础上,添加适当的全连接层(Dense Layers)和分类层(如Softmax层),以适应CT影像分类任务。
确定模型