欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
在信息安全日益受到重视的今天,图像加密技术成为了保护图像数据安全的重要手段。传统的图像加密方法虽然在一定程度上能够保护图像数据,但随着计算机技术和密码分析学的进步,这些方法正面临着严重的挑战。因此,开发一种新型的、高效的图像加密技术具有重要意义。本项目基于Matlab平台,结合压缩感知和密钥分发的技术,设计并实现了一种光学图像加密处理系统。
二、系统设计
压缩感知(Compressed Sensing, CS)
压缩感知是一种利用低采样率进行信号采集的技术,能够在恢复过程中实现信息的高效压缩和重建。在图像加密中,压缩感知可以通过减少数据的冗余,提高加密效率。
在本项目中,我们利用压缩感知技术对原始图像进行压缩,并通过量化操作生成认证信息。压缩后的图像数据和认证信息将作为加密的输入。
密钥分发
密钥分发是加密过程中至关重要的一环,它决定了加密系统的安全性和可靠性。在本项目中,我们采用双随机相位编码(Double Random-Phase Encoding, DRPE)技术作为密钥生成和分发的基础。
通过生成两个随机相位掩模作为加密密钥,第一个相位掩模用于对明文图像进行相位调制,第二个相位掩模用于对调制后的图像进行二次相位调制。这种双随机相位结构具有密钥空间大、抗攻击性强等优点。
光学图像加密
光学图像加密是一种基于光学原理的图像加密技术,具有速度快、安全性高等优点。在本项目中,我们结合压缩感知和密钥分发技术,实现了一种新型的光学图像加密方案。
具体而言,我们首先利用DRPE技术获取明文图像的相位信息,并对其进行量化以生成认证信息。然后,将明文图像通过压缩感知进行压缩,并使用sigmoid映射对压缩后的测量值进行量化。接着,将认证信息嵌入到量化后的测量值中,并通过置换和扩散操作得到密文图像。
在接收端,通过逆置换和扩散操作提取出认证信息,并利用逆DRPE技术恢复出明文图像。最后,通过非线性交叉相关方法使用认证图像对密文图像进行盲认证。
三、系统特点
高效性:结合压缩感知技术,实现了图像数据的高效压缩和加密,提高了加密效率。
安全性:采用双随机相位编码技术作为密钥生成和分发的基础,具有密钥空间大、抗攻击性强等优点,确保了加密系统的安全性。
实时性:光学图像加密技术具有速度快的特点,能够满足实时加密的需求。
盲认证:通过非线性交叉相关方法实现密文图像的盲认证,提高了系统的认证效率。
四、项目实施
数据准备:收集包含不同图像类型的数据集,并进行预处理和标注。
算法实现:在Matlab平台上编写压缩感知、密钥分发和光学图像加密等算法的代码,实现系统的核心功能。
模型训练与优化:根据实验结果对算法进行调优,提高加密效果和认证准确率。
系统集成与测试:将各个功能模块进行集成和调试,确保系统能够正常运行。使用测试数据集对系统进行全面测试,评估系统的性能和准确性。
二、功能
基于Matlab压缩感知和密钥分发的光学图像加密处理
三、系统
四. 总结
本项目预期将开发出一个基于Matlab的压缩感知和密钥分发的光学图像加密处理系统,该系统能够实现对图像数据的高效、安全加密,并通过盲认证技术实现对密文图像的快速认证。该系统将为图像数据的安全保护提供新的解决方案,并推动图像加密技术的发展。