回答(QA)系统
### 1. 问题处理 (Question Processing)
在问题处理阶段,系统首先需要解析用户的问题,以确定问题的类型和预期答案的类型。这包括:
- **问题类型分类**:确定问题是事实型的、定义型的还是列表型的等。
- **答案类型检测**:识别问题预期的答案种类,如人名、地点、日期等。
- **关键词提取**:从问题中提取重要的关键词和短语,这些将用于后续的文档检索。
- **关系提取**:分析问题中实体之间的潜在关系,如“谁是X公司的CEO?”中的“是”表示职务关系。
### 2. 文档检索 (Document Retrieval)
此阶段的目的是找到可能包含答案的文档。这通常涉及:
- **倒排索引**:使用倒排索引快速找到包含特定关键词的文档。倒排索引是一种索引结构,它存储了每个关键词出现在哪些文档中。
- **布尔查询**:根据问题中提取的关键词,构建布尔查询(使用AND、OR、NOT逻辑)来检索文档。
- **排名检索**:使用例如tf-idf(词频-逆文档频率)的方法对检索到的文档进行排名,以评估它们与查询的相关性。
### 3. 通道检索 (Passage Retrieval)
从相关文档中提取出具体的文本片段,这些片段更有可能包含答案:
- **段落分割**:将文档分割为较小的段落或片段。
- **通道排名**:根据片段中关键词的密度和分布,以及答案类型与片段内容的匹配程度,对片段进行重排。
### 4. 答案处理 (Answer Processing)
最后一个阶段是从选定的文本片段中提取和确认最终答案:
- **候选答案提取**:从排序较高的片段中识别可能的答案。
- **答案类型验证**:确认提取的答案是否符合预期的答案类型。
- **答案排名**:基于各种特征(如答案的完整性、上下文相关性和文本证据)对候选答案进行最终排名。
### 性能评价
- **准确率**:正确答案的比例。
- **召回率**:系统能够检索到的相关答案的比例。
- **F1分数**:准确率和召回率的调和平均,用于衡量系统的整体效果。
### 实例应用
如IBM的“沃森”,它展示了通过集成这些技术能在复杂的自然语言问题上达到超越人类的表现。