机器学习(二)

这节课主要讲解了感知器(Perceptron)和多层感知器(Multi-layer Perceptron, MLP)在机器学习中的应用。以下是更详细的内容总结:

### 1. 感知器(Perceptron)
- **基本概念**:
  - 感知器是一种线性分类器,最早由Rosenblatt在1957年提出。
  - 感知器模型模拟了神经元的工作方式,输入层接受输入特征,经过加权求和和激活函数后输出结果。

- **感知器模型**:
  - 输入层(Input layer):接收输入特征向量 \( x \)。
  - 加权求和(Weighted sum):将输入特征与权重 \( w \) 相乘后求和。
  - 激活函数(Activation function):通常使用符号函数(sign function),将加权和结果转换为输出。
  - 输出层(Output layer):输出分类结果。

- **训练算法**:
  - 初始化权重 \( w \)。
  - 对每个训练样本 \( x \),计算输出 \( y = \text{sign}(w \cdot x) \)。
  - 如果预测错误(即 \( y \neq \text{真实标签} \)),更新权重:
    - 如果真实标签为 +1: \( w \leftarrow w + x \)
    - 如果真实标签为 -1: \( w \leftarrow w - x \)
  - 重复上述步骤,直到所有样本分类正确或达到最大迭代次数。

- **等效关系**:
  - 感知器训练算法等效于批量大小为1的随机梯度下降(SGD)与铰链损失(hinge loss)。

### 2. 多层感知器(Multi-layer Perceptron, MLP)
- **基本概念**:
  - MLP 是一种包含一个或多个隐藏层的神经网络,每层由多个神经元组成。
  - 每个神经元通过非线性激活函数(如ReLU)处理输入。

- **模型结构**:
  - 输入层:接受输入特征向量 \( x \)。
  - 隐藏层(Hidden layers):每层包含多个神经元,应用非线性激活函数。
  - 输出层:输出最终预测结果。

- **激活函数**:
  - 常见的激活函数有Sigmoid、Tanh、ReLU、Leaky ReLU等。
  - ReLU 是大多数问题的默认选择,因为其计算效率高且能够缓解梯度消失问题。

- **前向传播(Forward Propagation)**:
  - 输入特征通过每层神经元的加权求和和激活函数,逐层传递,最终输出结果。

- **反向传播(Backpropagation)**:
  - 计算损失函数相对于每个权重的梯度,并更新权重以最小化损失函数。

- **优化算法**:
  - 梯度下降(Gradient Descent):通过迭代优化权重,最小化损失函数。
  - 随机梯度下降(SGD):在每次迭代中使用一个样本或一个小批量样本计算梯度,更新权重。

### 3. 线性和非线性模型
- **线性模型**:
  - 输入和输出之间的关系是线性的,如线性回归和线性分类器。
  - 感知器是一种线性分类器,无法处理非线性可分的数据集。

- **非线性模型**:
  - MLP通过引入非线性激活函数和隐藏层,能够处理非线性可分的数据集。
  - XOR问题:感知器无法解决,但一个包含隐藏层的MLP可以通过非线性激活函数解决。

### 4. 神经网络的架构
- **全连接层(Fully-connected layers)**:
  - 每个神经元与前一层的所有神经元相连。
  - 两层神经网络(包含一个隐藏层)称为两层神经网络。

- **通用近似定理(Universal Approximation Theorem)**:
  - 一个具有有限宽度隐藏层的感知器能够逼近任何连续函数。
  - 更复杂的函数可能需要更多的隐藏层或更大的隐藏层。

### 5. 总结
- 神经网络是线性函数和非线性激活函数的堆叠,具有比线性分类器更强的表示能力。
- 包含两层或更多隐藏层的神经网络是通用函数逼近器,能够表示任何数学函数。

通过本次课,你将了解感知器和多层感知器的基本原理、结构、训练算法,以及它们在解决线性和非线性分类问题中的应用。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值