多智能体协同机制在 Agent 学习中的应用
关键词:多智能体系统,协同机制,Agent学习,强化学习,分布式决策,马尔可夫决策过程(MDP),Q-learning,多Agent Q-learning,经验共享
1. 背景介绍
1.1 问题由来
随着人工智能技术的迅猛发展,智能体(Agent)在各种复杂的决策和优化问题中扮演着越来越重要的角色。在许多实际应用中,智能体需要在环境中进行持续学习和适应,以最大化其长期收益。然而,当环境变得复杂且智能体数量庞大时,单个智能体的学习往往难以应对。此时,多智能体系统(Multi-Agent System,MAS)的协同机制便显得尤为重要。
1.2 问题核心关键点
多智能体协同机制的核心思想是:通过多个智能体之间的合作与竞争,实现复杂环境的优化与决策。在MAS中,每个智能体都是一个决策者,通过观察环境状态并执行动作,以获得奖励(或称为收益)为目标。这些智能体可以通过共享信息、分工协作或竞争对抗等形式,达到系统整体的